Evans, W. D.; Zettl, A. Dirichlet and separation results for Schrödinger-type operators. (English) Zbl 0397.47022 Proc. R. Soc. Edinb., Sect. A 80, 151-162 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 8 Documents MSC: 47F05 General theory of partial differential operators (should also be assigned at least one other classification number in Section 47-XX) 35J25 Boundary value problems for second-order elliptic equations Keywords:Separation Property; Maximal Operator for Formally Self-Adjoint Differential Operators; Dirichlet Property PDF BibTeX XML Cite \textit{W. D. Evans} and \textit{A. Zettl}, Proc. R. Soc. Edinb., Sect. A, Math. 80, 151--162 (1978; Zbl 0397.47022) Full Text: DOI References: [1] Evans, Lecture Notes in Mathematics pp 564– (1976) [2] DOI: 10.1007/BF00250679 · Zbl 0326.35018 · doi:10.1007/BF00250679 [3] Atkinson, Proc. Roy. Soc. Edinburgh Sect. A 73 pp 167– (1975) · Zbl 0344.34014 · doi:10.1017/S030821050001636X [4] Atkinson, Proc. Roy. Soc. Edinburgh Sect. A. 71 pp 151– (1973) [5] Kato, A second look at the essential self-adjointness of the Schrödinger operator. Physical Reality and Mathematical Description. (1974) · Zbl 0328.47023 [6] Evans, Proc. Roy. Soc. Edinburgh Sect. A 79 pp 61– (1977) · Zbl 0374.35014 · doi:10.1017/S0308210500016826 [7] DOI: 10.1112/jlms/s2-15.2.271 · Zbl 0406.34037 · doi:10.1112/jlms/s2-15.2.271 [8] DOI: 10.1007/BF02760233 · Zbl 0246.35025 · doi:10.1007/BF02760233 [9] DOI: 10.1112/plms/s3-28.2.352 · Zbl 0278.34009 · doi:10.1112/plms/s3-28.2.352 [10] Everitt, Proc. Roy. Soc. Edinburgh Sect. A 71 pp 159– (1973) [11] DOI: 10.1007/BF01428264 · Zbl 0235.34045 · doi:10.1007/BF01428264 [12] DOI: 10.1007/BF01238041 · Zbl 0266.35018 · doi:10.1007/BF01238041 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.