×

Differential forms as spinors. (English) Zbl 0397.53005


MSC:

53C27 Spin and Spin\({}^c\) geometry
53B50 Applications of local differential geometry to the sciences
53C65 Integral geometry

References:

[1] E. Kähler , Innerer and äusserer Differentialkalkül ; Abh. Dt. Akad. Wiss. Berlin , Kl. für Math. , Phys. u. Techn., Jahrg. 1960 , Nr. 4 . Die Dirac-Gleichung ; Abh. Dt. Akad. Wiss. Berlin , KI. für Math. , Phys. u. Techn., Jahrg. 1961 , Nr. 1 . Der innere Differentialkalkül ; Rendiconti di Matematica , ( 3 - 4 ), Vol. 21 , 1962 , p. 425 - 523 . MR 189530
[2] A. Lichnerowicz , Laplacien sur une variété riemannienne et spineurs ; Atti Accad. naz. dei Lincei , Rendiconti , t. 33 , fsc. 5 , 1962 , p. 187 - 191 . Champs spinorielles et propagateurs en relativité générale ; Bull. Soc. math. France , t. 92 , 1964 . p. 11 - 100 . Numdam | MR 155268 | Zbl 0118.37601 · Zbl 0118.37601
[3] R. Brauer and H. Weyl , Spinors in n dimensions : Amer. J. Math. , t. 57 , 1935 . p. 425 - 449 . MR 1507084 | Zbl 0011.24401 | JFM 61.1025.06 · Zbl 0011.24401 · doi:10.2307/2371218
[4] C. Chevalley , The algebraic theory of spinors ; New York : Columbia University Press , 1964 . The construction and study of certain important algebras ; Publ. Math. Soc. Japan , t. 1 , 1955 . MR 60497 · Zbl 0065.01901
[5] P. Rashevskii , The theory of spinors ; Amer. Math. Soc. , Translations , Series 2 , vol. 6 , 1957 , p. 1 - 110 . Zbl 0077.14901 · Zbl 0077.14901
[6] N. Bourbaki , Algèbre, chap. 3 : algèbre multilinéaire ; Paris : Hermann , 1958 . Algèbre, chap. 9 : formes sesquilinéaires et formes quadratiques ; Paris : Hermann . 1959 . · Zbl 0102.25503
[7] M. Atiyah , Vector fields on manifolds; Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen , Natur-, Ingenieurund Gesellschaftswissenschaften , Heft 200 , 1970 . MR 263102 | Zbl 0193.52303 · Zbl 0193.52303
[8] G. Karrer , Darstellung von Cliffordbündeln ; Ann. Acad. Sci. Fennicae , Series A . I Mathematica , Nr. 521 , 1973 . MR 319095 | Zbl 0262.53025 · Zbl 0262.53025
[9] I. Popovici , Représentations irréductibles des fibrés de Clifford ; Ann. Inst. Henri Poincaré , Vol. XXV , n^\circ 1 , 1976 , p. 35 - 59 . Numdam | MR 425861 | Zbl 0337.53036 · Zbl 0337.53036
[10] D. Kastler . Introduction à l’électrodynamique quantique ; PARIS : DUNOD , 1961 . MR 144659 | Zbl 0098.20004 · Zbl 0098.20004
[11] B. Van Der Waerden , Algebra. Zweiter Teil ; Berlin , Heidelberg , New York : Springer , 1967 . MR 233647 | Zbl 0192.33002 · Zbl 0192.33002
[12] A. Crumeyrolle , Structures spinorielles ; Ann. Inst. Henri Poincaré , Vol. XI , n^\circ 1 . 1969 , p. 19 - 55 . Numdam | MR 271856 | Zbl 0188.26102 · Zbl 0188.26102
[13] W. Greub , S. Halperin and R. Vanstone , Connections, Curvature and Cohomology , Vol. I: de Rham Cohomology of manifolds and vector bundles; New York and London : Academic Press , 1972 . Connections, Curvature and Cohomology , Vol. II: Lie groups, principal bundles and characteristic classes; New York and London : Acad. Press , 1973 . MR 336650 | Zbl 0322.58001 · Zbl 0322.58001
[14] G. De Rham , Variétés différentiables ; Paris : Hermann , 1960 . Zbl 0089.08105 · Zbl 0089.08105
[15] L. Markus , Line element fields and Lorentz structures on differentiable manifolds ; Ann. of Math. , t. 62 , 1955 , p. 411 - 417 . MR 73169 | Zbl 0065.38802 · Zbl 0065.38802 · doi:10.2307/1970071
[16] W. Greub and H.-R. Petry , Minimal coupling and complex line bundles ; J. Math. Phys. , t. 16 , 1975 , p. 1347 - 1351 . MR 398363
[17] B. Kostant , Quantization and unitary representations ; in Lectures Notes in Mathematics , Vol. 170 , 1970 , p. 87 - 208 . MR 294568 | Zbl 0223.53028 · Zbl 0223.53028
[18] A. Petrov , Einstein-Räume ; Berlin : Akademie-Verlag , 1964 . MR 162594 | Zbl 0114.21003 · Zbl 0114.21003
[19] S. Kobayashi and K. Nomizu , Foundations of differential geometry ; New York , London : Interscience Publishers . 1963 MR 152974 | Zbl 0119.37502 · Zbl 0119.37502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.