×

zbMATH — the first resource for mathematics

Finite forms of de Finetti’s theorem on exchangeability. (English) Zbl 0397.60005

MSC:
60A10 Probabilistic measure theory
62A01 Foundations and philosophical topics in statistics
60D05 Geometric probability and stochastic geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Crisma, L.: 1971, ?Sulla proseguibilitĂ  di processi scambiabili,? Rend. Matem. Trieste 3, 96-124.
[2] Ericson, W. A.: 1973, ?A Bayesian Approach to 2-Stage Sampling,? Technical Report No. 26, Department of Statistics, University of Michigan, Ann Arbor. · Zbl 0334.62004
[3] Fienberg, S. E.: 1968, ?The Geometry of an r {\(\times\)} c Contingency Table,? Ann. Math. Stat. 39, 1186-90. · Zbl 0162.22104
[4] Fienberg, S. E. and Gilbert, J. P.: 1970, ?The Geometry of a Two by Two Contingency Table,? Jour. Amer. Stat. Assoc. 65, 695-701. · Zbl 0206.20502
[5] de Finetti, B.: 1964, ?Foresight: Its Logical Laws, Its Subjective Sources,? in Kyburg, H. E. and Smokler, H. E. (eds.), Studies in Subjective Probability, Wiley, New York.
[6] de Finetti, B.: 1969, ?Sulla proseguibilitĂ  di processi aleatori scambiabili,? Rend. Matem. Trieste 1, 53-67. · Zbl 0218.60106
[7] de Finetti, B.: 1972, Probability Induction and Statistics, Wiley, New York. · Zbl 0275.60001
[8] Hewitt, E. and Savage, L. J.: 1955, ?Symmetric Measures on Cartesian Products,? Trans. Amer. Math. Soc. 80, 470-501. · Zbl 0066.29604
[9] Kendall, D. G.: 1967, ?On Finite and Infinite Sequences of Exchangeable Events,? Studia Sci. Math. Hung. 2, 319-327. · Zbl 0157.25601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.