A propos de l’algorithme QZ. (French) Zbl 0397.65027


65F30 Other matrix algorithms (MSC2010)
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15A23 Factorization of matrices
Full Text: DOI EuDML


[1] 1. C. LEBAUD, Contribution à Vétude de Valgorithme QR, Thèse à l’Université deRennes, 1971.
[2] 2. C. LEBAUD, Remarques sur la convergence de l’algorithme QR, Revue Française d’Informatique et de Recherche Opérationnelle, 1968. MR247756
[3] 3. MOLER, G. W. STEWART, An algorithme for generalized Matrix eigenvalue problems, S.I.A.M., J. Numer. Anal, 10, 1973. Zbl0253.65019 MR345399 · Zbl 0253.65019
[4] 4. PARLETT, Global convergence of the basic QR algorithm for hessenberg matrices, Math. Comp., 22, 1968. Zbl0184.37602 MR247759 · Zbl 0184.37602
[5] 5. W. G. PARLETT, POOLE, A geometric theory for the QR, LU and power iteration, S.I.A.M., J. Numer. Anal., 7, 1972. Zbl0253.65018 · Zbl 0253.65018
[6] 6. PETERS, WILKINSON, \(Ax=\lambda Bx\) and the generalized eigenproblem, S.I.A.M., J.Numer. Anal, 7, 1970. Zbl0276.15016 · Zbl 0276.15016
[7] 7. G. W. STEWART, On the sensitivity of the eigenvalue problem A\(x\) = \(\lambda Bx\), S.I.A.M.,J. Numer. Anal., 9, 1972. Zbl0252.65026 MR311682 · Zbl 0252.65026
[8] 8. J. H. WILKINSON, The algebraic Eigenvalue problem, Oxford University Press, 1965. Zbl0258.65037 MR184422 · Zbl 0258.65037
[9] 9. J. H. WILKINSON, Some recent advances in numerical linear Algebra, dans < The state of the art in Numerical Analysis > , 1977. MR455326
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.