Cauchy and the continuum: the significance of non-standard analysis for the history and philosophy of mathematics. (English) Zbl 0398.01009


01A55 History of mathematics in the 19th century
26-03 History of real functions
01A80 Sociology (and profession) of mathematics
03H05 Nonstandard models in mathematics
26A15 Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.) for real functions in one variable
Full Text: DOI


[1] Abel, N. H. [1826a]: ’Untersuchungen über die Reihe 1 +m/1x +m{\(\cdot\)}m 1/1 {\(\cdot\)}2x 2 + ...,Journal für die Reine und Angewandte Mathematik, 1, pp. 311–339. · doi:10.1515/crll.1826.1.311
[2] Agassi, J. [1963]: Towards an Historiography of Science, Wesleyan University Press.
[3] Baumann, J. J. [1869]:Die Lehren von Zeit, Raum und Mathematik, volume 2. Berlin: G. Reiner.
[4] Beck, L. J. [1952]:The Method of Descartes: A Study of the Regulae. Oxford: Clarendon Press. · Zbl 0049.00403
[5] Bell, E. T. [1937]:Men of Mathematics. London: Victor Gollancz.
[6] Bell, E. T. [1940]:The Development of Mathematics. New York: McGraw-Hill. · Zbl 0025.00101
[7] Bourbaki, N. [1940b]:Topologie Générale. Paris: Hermann.
[8] Bourbaki, N. [1960]:Eléments ďHistoire des Mathématiques. Paris: Hermann.
[9] Bover, C.B. [1949]:The Concepts of the Calculus. New York: Columbia University Press.
[10] Cajori, F. [1919]:A History of Mathematics. 2nd edition. New York and London: Macmillan, 1961.
[11] Cauchy, A. L. [1821]:Cours ďAnalyse de ľEcole Royale Polytechnique. Paris: de Bure.
[12] Cauchy, A. L. [1823]:Résumé des leçons sur le calcul Infinitésimal. Paris: de Bure. InOeuvres Complètes, Séries 2, volume 4, pp. 5–261.
[13] Cauchy, A. L. [1853]: ’Note sur les séries convergentes dont les Divers Terms sont des Functions Continues ďune Variable Réelle ou Imaginaire entre des Limites Données’,Comptes Rendus des Séances des ľAcadémie des Sciences, 36, pp. 454–459.
[14] Chwistek,L. [1948]:The Limits of Science. London: Kegan Paul.
[15] Dirichlet, P. L. [1829]:’Sur la Convergence des Séries Trigonométriques que Servent à Représenter une Function Arbitraire entre des Limites Données’,Journal für die Reine und Angewandte Mathematik, 4, pp. 157–169. · doi:10.1515/crll.1829.4.157
[16] Duhem, P. [1906] :La Théorie Physique; son Objet, sa Structure, English translation of the second (1914) edition:The Aim and Structure of Physical Theory. Princeton University Press, 1954.
[17] Fourier, J. [1822]:Théorie analytique de la Chaleur. Translated into English asThe Analytical Theory of Heat. New York: Dover.
[18] Frayne, T., Morel, A. C. and Scott, D. S. [1962–3]: ’Reduced Direct Products’,Fundamenta Mathematica, 51, pp. 195–228. · Zbl 0108.00501
[19] Grattan-Guinness, I. and Ravetz, J. R. [1972]:Joseph Fourier, 1768–1830. Cambridge, Mass.: M.I.T. Press.
[20] Hardy, G. H. [1918]: ’Sir George Stokes and the Concept of Uniform Convergence’,Proceedings of the Cambridge Philosophical Society, 18/19, pp. 148–156.
[21] Houel, J. [1878]:Calcul Infinitesimal, volume 1. Paris.
[22] Klein, F. [1908]:Elementary Mathematics from an Advanced Standpoint. New York: Dover.
[23] Kreisel, G. [1956–7]: ’Some Uses of Metamathematics’,British Journal for the Philosophy of Science, 7, pp. 161–173. · doi:10.1093/bjps/VII.26.161
[24] Kreisel, G. and Krivine, J. L. [1967]:Elements of Mathematical Logic. Amsterdam: North Holland. · Zbl 0155.33801
[25] Lakatos, I. [1963–4]: ’Proofs and Refutations’,British Journal for the Philosophy of Science, 14, pp. 1–25, 120–139, 221–243, 296, 342. Republished in revised form as part of Lakatos [1976c]. · doi:10.1093/bjps/XIV.53.1
[26] Lakatos, I. [1976c]:Proofs and Refutations: The Logic of Mathematical Discovery. Edited by J. Worrall and E. G. Zahar. Cambridge University Press. · Zbl 0334.00022
[27] Leibniz, G. W. F. [1678]: ’Letter to Conring, 19 March’, in L. Loemker (ed. ) :Leibniz’s Philosophical Papers and Letters, pp. 186–191. Dordrecht: Reidel, 1967.
[28] Lhuilier, S.A.J. [1787]:Exposition Elémentaire des Principes des Calculs Supérieurs. Berlin: G. J. Decker.
[29] Pringsheim, A. [1916]: ’Grundlagen der Allgemeinen Functionen lehre’, In M. Burkhardt, W. Wutinger and R. Fricke (eds.):Encyklopädie der Mathematischen Wissenschaften, 2, Erste Teil, Erste Halbband, pp. 1–53. Leipzig: Teubner.
[30] Robinson, A. [1966]:Non-Standard Analysis. Amsterdam: North Holland. · Zbl 0151.00803
[31] Robinson, A. [1967]: ’The Metaphysics of the Calculus’, in I. Lakatos (ed): [1967], pp. 28–40. · Zbl 0166.05801
[32] Russell, B. A. W. [1948]:Human Knowledge: Its Scope and Limits. London: George Allen and Unwin.
[33] Rychlik, K. [1962]:Théorie der Reellen Zahlen im Bolzano’s Handschriftlichen Nachlasse. Prague: Verlag der Tschechoslowakischen Akademie der Wissenschaften.
[34] Sacks, G. E. [1972]: ’Differential Closure of a Differential Fielď,Bulletin of the American Mathematical Society, 78, pp. 629–634. · Zbl 0276.02039 · doi:10.1090/S0002-9904-1972-12969-0
[35] Seidel, P. L. [1847]: ’Note über eine Eigenschaft der Reihen, welche Discontinuirliche Functionen daisteilen’,Abhandlungen der Mathematik -Physikalischen Klasse der Königlich Bayerischen Akademie der Wissenschaften, 5, pp. 381–394.
[36] Smith, D. E. [1929]:A Scource Book in Mathematics. New York: Dover, 1959.
[37] Whewell, W. [1858]:History of Scientific Ideas, volume 1. (Part One of the third edition ofThe Philosophy of the Inductive Sciences.)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.