Miki, Hiroo On the maximal abelian \(\ell\)-extension of a finite algebraic number field with given ramification. (English) Zbl 0398.12003 Nagoya Math. J. 70, 183-202 (1978). Reviewer: Akio Yokoyama (Saitama) Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 11 Documents MSC: 11R29 Class numbers, class groups, discriminants 11R18 Cyclotomic extensions 11R32 Galois theory Keywords:class number; cyclotomic extension; Galois group; maximal abelian extension; cyclic extensions × Cite Format Result Cite Review PDF Full Text: DOI References: [1] A note on the p-rank of ideal class groups of finite algebraic number fields [2] J. Math. Soc. Japan 30 (1978) [3] Nagoya Math. J 12 pp 177– (1957) · Zbl 0079.26803 · doi:10.1017/S0027763000022042 [4] Galois Theorie der p-Erweiterungen (1970) [5] 35 pp 189– (1956) [6] J. reine angew. Math 219 pp 30– (1965) [7] J. reine angew. Math 188 pp 40– (1950) [8] Amer. Math. Soc. Proc. of Symp. in pure Math XX pp 96– (1969) [9] J. reine angew. Math 169 pp 103– (1933) [10] DOI: 10.2307/1970784 · Zbl 0285.12008 · doi:10.2307/1970784 [11] C. R. Acad. Sc. Paris, t. 274, Série A pp 377– (1972) [12] Introduction to Ze-extensions (1971) [13] Algebraic number theory (1967) [14] Abh. Math. Sem. Univ. Hamburg 20 pp 189– (1956) [15] DOI: 10.1307/mmj/1028999477 · Zbl 0141.04803 · doi:10.1307/mmj/1028999477 [16] DOI: 10.1112/S0025579300003703 · Zbl 0171.01105 · doi:10.1112/S0025579300003703 [17] Ann. scient. ÉC. Norm, Sup., 4e série 5 pp 517– (1972) [18] Class Field Theory (1967) [19] Basic Number Theory (1967) · Zbl 0176.33601 [20] DOI: 10.2307/1969335 · Zbl 0036.15802 · doi:10.2307/1969335 [21] DOI: 10.2748/tmj/1178243506 · Zbl 0139.28202 · doi:10.2748/tmj/1178243506 [22] Nagoya Math. J. 29 pp 31– (1967) · Zbl 0166.05803 · doi:10.1017/S0027763000024119 [23] DOI: 10.1007/BF02684785 · doi:10.1007/BF02684785 [24] Chap. IX pp 231– [25] DOI: 10.1007/BF01389690 · Zbl 0267.12005 · doi:10.1007/BF01389690 [26] J. Fac. Univ. Tokyo Sec. IA 21 pp 377– (1974) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.