Askey, Richard The q-gamma and q-beta functions. (English) Zbl 0398.33001 Appl. Anal. 8, 125-141 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 89 Documents MSC: 33B15 Gamma, beta and polygamma functions 33E05 Elliptic functions and integrals Keywords:q-gamma functions; q-beta functions Citations:Zbl 0171.103; Zbl 0031.04901; Zbl 0021.39603 PDF BibTeX XML Cite \textit{R. Askey}, Appl. Anal. 8, 125--141 (1978; Zbl 0398.33001) Full Text: DOI OpenURL References: [1] Andrews G. E., Aequationes Math to appear [2] Andrews G. E., The Classical and Discrete Orthogonal Polynomials and their q-Analogues [3] Artin E., The Gamma Function (1964) · Zbl 0144.06802 [4] Bailey W. N., Generalized Hypergeometric Series · Zbl 0011.02303 [5] Bohr, H. and Mollerup, J.Laerebog i matematisk Analyse149–164. [6] Hahn W., Math. Nach. 2 pp 4– (1949) · Zbl 0031.39001 [7] Hahn W., Proc. Amer. Math. Soc. 63 pp 185– (1977) [8] Jackson F. H., Quart. Jour. Pure and Appl. Math. 41 pp 193– (1910) [9] Jackson F. H., Modular Functions in Analytic Number Theory (1970) [10] Littlewood J. E., Proc. London Math. Soc 5 (2) pp 361– (1907) · JFM 38.0450.01 [11] Sansone G., Lectures on the Theory of Functions of a Complex Variable (1960) · Zbl 0093.26803 [12] Toeplitz O., The Calculus, {\(\alpha\)} Genetic Approach (1963) · Zbl 0125.00110 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.