zbMATH — the first resource for mathematics

On the fundamental theory of multivalued differential equations. (English) Zbl 0398.34017

34A60 Ordinary differential inclusions
49J45 Methods involving semicontinuity and convergence; relaxation
Full Text: DOI
[1] {\scH. A. Antosiewicz and A. Cellina}, Continuous selections and differential relations, J. Differential Equations, to appear.
[2] Aumann, R.J, Integrals of set valued functions, J. math. anal. appl., 12, 1-12, (1965) · Zbl 0163.06301
[3] Eggleston, H.C, Convexity, () · Zbl 0086.15302
[4] Filippov, A.F, Classical solutions of differential equations with multivalued right hand side, SIAM J. control, 5, 609-621, (1967)
[5] Filippov, A.F, On the existence of solutions of multivalued differential equations, Mat. zametki, 10, 307-313, (1971)
[6] Hermes, H, The generalized differential equation \(ẋ ϵ R(t, x)\), Advances in math., 4, 149-169, (1970) · Zbl 0191.38803
[7] Hermes, H, Existence and properties of solutions of \(ẋ ϵ R(t, x)\), (), 188-193
[8] Hermes, H, On continuous and measurable selection and the existence of solutions of generalized differential equations, (), 535-542 · Zbl 0214.09802
[9] Kaczynski, H; Olech, C, Existence of solutions of orientor fields with nonconvex right hand side, Ann. polon. math., 29, 61-66, (1974) · Zbl 0285.34008
[10] Plis, A, Trajectories and quasitrajectories of an orientor field, Bull. acad. polon. sci. ser. sci. mat. astronom. phys., 11, 369-370, (1963) · Zbl 0124.29404
[11] Turowicz, A, Sur LES trajectoires des systèmes de commande nonlinéaires, Bull. acad. polon. sci. ser. sci. mat. astronom. phys., 10, 529-531, (1962) · Zbl 0107.28703
[12] Dragoni, G.S, Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un’altra variabile, (), 102-108 · Zbl 0032.19702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.