McAllister, David F.; Roulier, John A. Interpolation by convex quadratic splines. (English) Zbl 0398.41004 Math. Comput. 32, 1154-1162 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 30 Documents MSC: 41A05 Interpolation in approximation theory 41A15 Spline approximation 65D05 Numerical interpolation 65D07 Numerical computation using splines Keywords:Interpolation By Convex Quadratic Splines; Interpolation to Convex Data By a Convex Polynomial Spline; Algorithm for Interpolation Citations:Zbl 0371.65001; Zbl 0378.41002 PDF BibTeX XML Cite \textit{D. F. McAllister} and \textit{J. A. Roulier}, Math. Comput. 32, 1154--1162 (1978; Zbl 0398.41004) Full Text: DOI OpenURL References: [1] Практическое руководство по сплайнам, ”Радио и Связ\(^{\приме}\)”, Мосцощ, 1985 (Руссиан). Транслатед фром тхе Енглиш бы В. К. Галицкий анд С. А. Шестаков; Транслатион едитед анд щитх а префаце бы В. И. Скурихин. [2] R. PETER DUBE, ”Univariate blending functions and alternatives,” Comput. Graphics and Image Processing, v. 6, 1977, pp. 394-408. [3] R. PETER DUBE, ”Automatic generation of parameters for preliminary interactive design of free-form curves.” (To appear.) [4] G. G. Lorentz, Approximation of functions, Holt, Rinehart and Winston, New York-Chicago, Ill.-Toronto, Ont., 1966. · Zbl 0153.38901 [5] David F. McAllister, Eli Passow, and John A. Roulier, Algorithms for computing shape preserving spline interpolations to data, Math. Comp. 31 (1977), no. 139, 717 – 725. · Zbl 0371.65001 [6] Eli Passow and John A. Roulier, Monotone and convex spline interpolation, SIAM J. Numer. Anal. 14 (1977), no. 5, 904 – 909. · Zbl 0378.41002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.