Interpolation by convex quadratic splines. (English) Zbl 0398.41004


41A05 Interpolation in approximation theory
41A15 Spline approximation
65D05 Numerical interpolation
65D07 Numerical computation using splines
Full Text: DOI


[1] Практическое руководство по сплайнам, ”Радио и Связ\(^{\приме}\)”, Мосцощ, 1985 (Руссиан). Транслатед фром тхе Енглиш бы В. К. Галицкий анд С. А. Шестаков; Транслатион едитед анд щитх а префаце бы В. И. Скурихин.
[2] R. PETER DUBE, ”Univariate blending functions and alternatives,” Comput. Graphics and Image Processing, v. 6, 1977, pp. 394-408.
[3] R. PETER DUBE, ”Automatic generation of parameters for preliminary interactive design of free-form curves.” (To appear.)
[4] G. G. Lorentz, Approximation of functions, Holt, Rinehart and Winston, New York-Chicago, Ill.-Toronto, Ont., 1966. · Zbl 0153.38901
[5] David F. McAllister, Eli Passow, and John A. Roulier, Algorithms for computing shape preserving spline interpolations to data, Math. Comp. 31 (1977), no. 139, 717 – 725. · Zbl 0371.65001
[6] Eli Passow and John A. Roulier, Monotone and convex spline interpolation, SIAM J. Numer. Anal. 14 (1977), no. 5, 904 – 909. · Zbl 0378.41002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.