Dunford-Pettis sets in the space of Bochner integrable functions. (English) Zbl 0398.46025


46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E40 Spaces of vector- and operator-valued functions
Full Text: DOI EuDML


[1] Bourgain, J.: An averaging result forl 1-sequences and application to weakly conditionally compact sets inL 1(?,X) (preprint)
[2] Brooks, J.K., Dinculeanu, N.: Weak compactness in the space of Bochner integrable functions and applications. Advances in Math.24, 172-188 (1977) · Zbl 0354.46026
[3] Davis, W.J., Figiel, T., Johnson, W.B., Pelczynski, A.: Factoring weakly compact operators. J. Funct. Anal.17, 311-327 (1974) · Zbl 0306.46020
[4] Diestel, J.: Remarks on weak compactness inL 1(?,X). Glasgow Math. J.18, 87-91 (1977) · Zbl 0342.46020
[5] Diestel, J., Uhl, J.J., Jr.: Vector measures. Math. Surveys No. 15, American Mathematics Society, Providence 1977 · Zbl 0369.46039
[6] Dinculeanu, N.: Vector measures. New York: Pergamon Press 1967 · Zbl 0156.14902
[7] Rosenthal, H.P.: A characterization of Banach spaces containingl 1. Proc. Nat. Acad. Sci. USA71, 2411-2413 (1974) · Zbl 0297.46013
[8] Rosenthal, H.P.: Pointwise compact subsets of the first Baire class. Amer. J. Math.99, 362-378 (1977) · Zbl 0392.54009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.