zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Norm derivatives on spaces of operators. (English) Zbl 0398.47013

47B10Operators belonging to operator ideals
58C20Differentiation theory (Gateaux, Fréchet, etc.) on manifolds
Full Text: DOI EuDML
[1] Day, M.: Normed linear spaces. Berlin-Heidelberg-New York: Springer 1962 · Zbl 0100.10802
[2] Giles, J. R.: On a characterization of differentiability of the norm of a normed linear space. J. Aus. Math. Soc.12, 106-114 (1971) · Zbl 0207.43901 · doi:10.1017/S1446788700008387
[3] Hewitt, E., Stromberg, K.: Real and abstract analysis. Berlin-Heidelberg-New York: Springer 1969 · Zbl 0225.26001
[4] Holmes, R.B., Scranton, B., Ward, J.: Approximation from the space of compact operators and otherM-ideals. Duke Math. J.42, (1975) · Zbl 0332.47024
[5] Holmes, R. B.: Geometric functional analysis and its applications. Berlin-Heidelberg-New York: Springer 1975 · Zbl 0336.46001
[6] Holub, J. R.: On the metric geometry of ideals of operators on Hilbert space. Math. Ann.201, 157-163 (1973) · Zbl 0234.47045 · doi:10.1007/BF01359793
[7] McCarthy, C.:c p , Israel J. Math.5, 249-271 (1967)
[8] Reed, M., Simon, B.: Functional analysis. Vol. 1, New York-London: Academic Press 1972 · Zbl 0242.46001