×

zbMATH — the first resource for mathematics

Endliche Spiegelungsgruppen, die als Weylgruppen auftreten. (German) Zbl 0399.20037

MSC:
20F65 Geometric group theory
20G40 Linear algebraic groups over finite fields
20H15 Other geometric groups, including crystallographic groups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bourbaki, N.: Groupes et algèbres de Lie, Chap. 4, 5, 6. Actu. Sci. Ind., no 1337. Paris: Hermann 1968 · Zbl 0186.33001
[2] Bruhat, F., Tits, J.: Groupes algébriques simples sur un corps local. Proc. Conference on Local Fields (Driebergen, 1966), pp. 23-36. Berlin, Heidelberg, New York: Springer 1967 · Zbl 0263.14016
[3] Feit, W., Higman, G.: The nonexistence of certain generalized polygons. J. of Algebra,1, 114-131 (1964) · Zbl 0126.05303
[4] Iwahori, N., Matsumoto, H.: On some Bruhat decomposition and the structure of the Hecke ring ofp-adic Chevalley groups. Publ. Math. IHES25, 5-48 (1965) · Zbl 0228.20015
[5] Kegel, O., Schleirmacher, A.: Amalgams and embeddings of projective planes. Geometriae Dedicata,2, 379-395, (1973) · Zbl 0271.50017
[6] Moody, R., Teo, K.: Tits’ systems with crystallographic Weyl groups. J. of Algebra,21, 178-190 (1972) · Zbl 0232.20089
[7] Tits, J.: Groupes et géométries de Coxeter. Preprint, IHES, Paris, 1961 · Zbl 0267.20041
[8] Tits, J.: Buildings of spherical type and finiteBN-pairs. Lecture Notes in Math. no 386. Berlin, Heidelberg, New York: Springer 1974
[9] Tits, J.: Classification of buildings of spherical type and Moufang polygons: a survey. Atti Coll. Intern. Teorie Combinatorie, Accad. Naz. dei Lincei, Roma,1973, 229-246 (1976)
[10] Tits, J.: Non-existence de certains polygones généralisés, I. Inventiones math.36, 275-284 (1976) · Zbl 0369.20004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.