zbMATH — the first resource for mathematics

The finiteness obstructions for nilpotent spaces lie in \(D(Z\pi)\). (English) Zbl 0399.55016
Reviewer: G. Mislin

55S35 Obstruction theory in algebraic topology
20F18 Nilpotent groups
20F34 Fundamental groups and their automorphisms (group-theoretic aspects)
57M05 Fundamental group, presentations, free differential calculus
Full Text: DOI EuDML
[1] Brown, K.S., Dror, E.: The Artin-Rees property and homology: Israel Journal of Mathematics,22, 93-109 (1975) · Zbl 0321.18010
[2] Endo, S., Miyata, T.: On the projective class group of finite groups: Osaka J. of Math.,13, 109-122 (1976) · Zbl 0364.20009
[3] Fröhlich, A., Keating, M.E., Wilson, S.M.J.: The class groups of quaternion and dihedral 2-groups; Mathematika,21, 64-71 (1974) · Zbl 0303.12006
[4] Feit, W.: Characters of finite groups, New York: W. A. Benjamin Inc. 1967 · Zbl 0166.29002
[5] Godement, R.: Topologie algébrique et théorie des faisceaux, Hermann, Paris 1958 · Zbl 0080.16201
[6] Hasse, H.: Über die Klassenzahl Abelscher Zahlkörper; Berlin: Akademie-Verlag 1952 · Zbl 0063.01966
[7] Hilton, P.J., Mislin, G., Roitberg, J.: Localization of nilpotent groups and spaces; Mathematics Studies 15, Amsterdam: North-Holland Publishing Company 1975 · Zbl 0323.55016
[8] Mislin, G.: Wall’s obstruction for nilpotent spaces; Topology14, 311-317 (1975) · Zbl 0315.55013
[9] Mislin, G.: Finitely dominated nilpotent spaces; Annals of Math.103, 547-556 (1976) · Zbl 0327.55008
[10] Mislin, G.: The geometric realization of Wall obstructions by nilpotent and simple spaces; preprint · Zbl 0435.55002
[11] Reiner, I., Ullom, S.: A Mayer-Vietoris sequence for class groups; J. Alg.31, 305-342 (1974) · Zbl 0286.12009
[12] Ullom, S.: The exponent of class groups; J. Alg.29, 124-132 (1974) · Zbl 0278.20016
[13] Varadarajan, K.: Finiteness obstruction for nilpotent spaces; J. Pure and Appl. Algebra,12, 137-146 (1978) · Zbl 0376.55010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.