×

zbMATH — the first resource for mathematics

A mixed finite element method for the Navier-Stokes equations. (English) Zbl 0399.76035

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] 1. R. A. ADAMS, Sobolev Spaces, Academic Press, New York, 1976. Zbl0314.46030 MR450957 · Zbl 0314.46030
[2] 2. G. DUVAUT and J. L. LIONS, Les inéquations en mécanique et en physique, Dunod, Paris, 1972. Zbl0298.73001 MR464857 · Zbl 0298.73001
[3] 3. M. FORTIN, Résolution numérique des équations de Navier-Stokes par des éléments finis de type mixte, 2nd International Symposium on Finite Element Methods in Flow-problems, S. Margherita Ligure, Italy, 1976.
[4] 4. C. JOHNSON and B. MERCIER, Some Mixed Finite Element Methods for Elasticity Problems, Numer. Math., vol. 30, 1978, pp. 103-116. Zbl0427.73072 MR483904 · Zbl 0427.73072 · doi:10.1007/BF01403910 · eudml:132541
[5] 5. P. A. RAVIART, A Mixed Finite Element for the Navier-Stokes Equations, preprint, 1977. Zbl0396.65070 · Zbl 0396.65070 · doi:10.1007/BF01398643 · eudml:132640
[6] 6. R. TEMAM, Theory and Numerical Analysis of the Navier-Stokes Equations, North Holland, 1977. Zbl0383.35057 MR769654 · Zbl 0383.35057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.