zbMATH — the first resource for mathematics

A moving-mesh finite element method with local refinement for parabolic partial differential equations. (English) Zbl 0612.65070
The authors discuss a novel method for discretization, error estimation and moving mesh procedures using the finite element method. It is shown that creating an adaptive finite element algorithm can ensure better accuracy. Examples are given for illustration purposes.
Reviewer: P.K.Mahanti

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
Full Text: DOI
[1] Gear, C.W., Numerical initial value problems in ordinary differential equations, (1971), Prentice-Hall Englewood Cliffs, NJ · Zbl 0217.21701
[2] Childs, B.; Scott, M.; Daniel, J.W.; Denman, E.; Nelson, P., ()
[3] Babuška, I.; Chandra, J.; Flaherty, J.E., Adaptive computational methods for partial differential equations, (1983), SIAM Philadelphia, PA
[4] Babuška, I.; Zienkiewicz, O.C.; Oliveira, E.Arantes e; Gago, J.R.; Morgan, K., Accuracy estimates and adaptivity for finite elements, (1986), Wiley London · Zbl 0663.65001
[5] Babuška, I.; Miller, A., A posteriori error estimates and adaptive techniques for the finite element method, () · Zbl 0571.73074
[6] Bank, R.E.; Sherman, A., An adaptive multi-level method for elliptical boundary value problems, Computing, 26, 91-105, (1981) · Zbl 0466.65058
[7] Bank, R.E.; Weiser, A., Some a posteriori error estimates for elliptic partial differential equations, Math. comp., 44, 283-301, (1985) · Zbl 0569.65079
[8] Mesztenyi, C.; Szymczak, W., FEARS User’s manual for the univac 1100, ()
[9] Davis, S.F.; Flaherty, J.E., An adaptive finite element method for initial-boundary value problems for partial differential equations, SIAM J. sci. statist. comput., 3, 6-27, (1982) · Zbl 0478.65063
[10] Miller, K.; Miller, R.N., Moving finite elements. I, SIAM J. numer. anal., 18, 1019-1032, (1981) · Zbl 0518.65082
[11] Miller, K., Moving finite elements. II, SIAM J. numer. anal., 18, 1033-1057, (1981) · Zbl 0518.65083
[12] Gelinas, R.J.; Doss, S.K.; Miller, K., The moving finite element method: application to general partial differential equations with multiple large gradients, J. comput. phys., 40, 202-249, (1981) · Zbl 0482.65061
[13] Bell, J.B.; Shubin, G.R., An adaptive grid finite difference method for conservation laws, J. comput. phys., 52, 569-591, (1983) · Zbl 0517.65066
[14] Harten, A.; Hyman, J.M., Self-adjusting grid methods for one-dimensional hyperbolic conservation laws, () · Zbl 0565.65049
[15] D.C. Arney and J.E. Flaherty, A two-dimensional mesh moving technique for time dependent partial differential equations, J. Comput. Phys., to appear. · Zbl 0614.65128
[16] Brackbill, J.U.; Saltzman, J.S., Adaptive zoning for singular problems in two dimensions, J. comput. phys., 46, 342-368, (1982) · Zbl 0489.76007
[17] Dwyer, H.A., Grid adaptation for problems with separation, cell Reynolds number, shock-boundary layer interaction, and accuracy, ()
[18] Rai, M.M.; Anderson, D.A., Grid evolution in time asymptotic problems, J. comput. phys., 43, 327-344, (1981) · Zbl 0473.76036
[19] Berger, M.J.; Öliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. comput. phys., 53, 484-512, (1984) · Zbl 0536.65071
[20] Bieterman, M.; Babuška, I., The finite element method for parabolic equations, I. A posteriori error estimation, Numer. math., 40, 339-371, (1982) · Zbl 0534.65072
[21] Bieterman, M.; Babuška, I., The finite element method for parabolic equations, II. A posteriori error estimation and adaptive approach, Numer. math., 40, 373-406, (1982) · Zbl 0534.65073
[22] Flaherty, J.E.; Moore, P.K., A local refinement finite element method for time dependent partial differential equations, (), 585-595
[23] Ewing, R.E., Adaptive mesh refinement in petroleum reservoir simulation, ()
[24] Gannon, D.B., Self adaptive methods for parabolic partial differential equations, ()
[25] Smooke, M.D.; Koszykowski, M.L., Two-dimensional fully adaptive solutions of solid-solid alloying reactions, () · Zbl 0588.65086
[26] S. Adjerid and J.E. Flaherty, A moving finite element method for time dependent partial differential equations with error estimation and refinement, Siam J. Numer. Anal., to appear. · Zbl 0612.65071
[27] Petzold, L.R., A description of DASSL: a differential/algebraic system solver, (), 82-8637
[28] Oden, J.T.; Carey, G.F., ()
[29] Douglas, J.; Dupont, T., Galerkin approximations of the two-point boundary problems using continuous piecewise polynomial spaces, Numer. math., 22, 99-109, (1974) · Zbl 0331.65051
[30] Adjerid, S., Adaptive finite element methods for time-dependent partial differential equations, () · Zbl 1124.65081
[31] J.M. Coyle, J.E. Flaherty and R. Ludwig, On the stability of mesh equidistribution strategies for time dependent partial differential equations, J. Comput. Phys., to appear. · Zbl 0579.65122
[32] Concus, P.; Proskurowski, W., Numerical solution of a nonlinear hyperbolic equation by the random choice method, () · Zbl 0399.65068
[33] Bieterman, M.; Flaherty, J.E.; Moore, P.K., Adaptive refinement methods for nonlinear parabolic partial differential equations, ()
[34] Kapila, A.K., Asymptotic treatment of chemically reacting systems, (1983), Pitman Advanced Publishing Program Boston, MA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.