×

A bound for the least prime ideal in the Chebotarev density theorem. (English) Zbl 0401.12014


MSC:

11R45 Density theorems
11R42 Zeta functions and \(L\)-functions of number fields

Citations:

Zbl 0362.12011
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Ankeny, N.C.: The least quadratic non-residue. Annals of Math.55, 65-72 (1952) · Zbl 0046.04006
[2] Bombieri, E.: Le grand crible dans la théorie analytique des nombres. Astérisque No. 18, Société Mathématique de France, Paris 1974
[3] Deuring, M.: Über den Tschebotareffschen Dichtigkeitssatz. Math. Annalen110, 414-415 (1934) · Zbl 0009.39403
[4] Fogels, E.: On the distribution of prime ideals. Acta Arithmetica7, 255-269 (1961/62) · Zbl 0114.02501
[5] Guinand, A.P.: A summation formula in the theory of prime numbers. Proc. London Math. Soc. (2)50, 107-119 (1948) · Zbl 0031.11003
[6] Heilbronn, H.: Zeta functions andL-functions. In: Algebraic Number Theory (J.W.S. Cassels and A. Fröhlich, eds.) pp. 204-230. New York, London: Academic Press, 1967
[7] Lagarias, J.C.: Odlyzko, A.M.: Effective Versions of the Chebotarev Density Theorem. In: Algebraic Number Fields,L-Functions and Galois Properties (A. Fröhlich, ed.), pp. 409-464. New York, London: Academic Press 1977 · Zbl 0362.12011
[8] Landau, E.: Algebraische Zahlen, Göttingen 1927
[9] Stark, H.M.: Some effective cases of the Brauer-Siegel theorem. Inventiones math.23, 135-152 (1974) · Zbl 0278.12005
[10] Tschebotareff, N.: Die Bestimmung der Dichtigkeit einer Menge von Primzahlen welche zu einer gegebenen Substitutionenklasse gehören. Math. Annalen95, 191-228 (1926) · JFM 51.0149.04
[11] Turàn, P.: Eine neue Methode in der Analysis und deren Anwendungen. Budapest: Akademiai Kiadó 1953 · Zbl 0052.04601
[12] Weil, A.: Sur les ?formules explicites? de la théorie des nombres premiers. Comm. Sem. Math. Lund 252-265 (1952) · Zbl 0049.03205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.