Morgan, John W. The algebraic topology of smooth algebraic varieties. (English) Zbl 0401.14003 Publ. Math., Inst. Hautes Étud. Sci. 48, 137-204 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 19 ReviewsCited in 113 Documents MSC: 14F35 Homotopy theory and fundamental groups in algebraic geometry 14C30 Transcendental methods, Hodge theory (algebro-geometric aspects) 55Q20 Homotopy groups of wedges, joins, and simple spaces Keywords:Rational Homotopy Invariants; Wedge Product; Mixed Hodge Structures; Minimal Model Citations:Zbl 0219.14007; Zbl 0374.57002 PDFBibTeX XMLCite \textit{J. W. Morgan}, Publ. Math., Inst. Hautes Étud. Sci. 48, 137--204 (1978; Zbl 0401.14003) Full Text: DOI Numdam EuDML References: [1] A. Bousfield andD. Kan, Homotopy limits, completions and localizations,Lecture Notes in Mathematics,304, Berlin-Heidelberg-New York, Springer, 1972. · Zbl 0259.55004 [2] A. Borel,Linear algebraic groups, New York, Benjamin, 1969. · Zbl 0206.49801 [3] P. Deligne, Théorie de Hodge, I,Actes du Congrès international des Mathématiciens,I, Nice, 1970, 425–430. [4] P. Deligne, Théorie de Hodge, II,Publ. math. I.H.E.S.,40 (1971), 5–58. [5] P. Deligne, P. Griffiths, J. Morgan andD. Sullivan, Real Homotopy theory of Kähler manifolds,Invent. math.,29 (1975), 245–274. · Zbl 0312.55011 · doi:10.1007/BF01389853 [6] H. Rironaka, Resolution of signularities of an algebraic variety over a field of characteristic o,Ann. of Math.,79 (1964), 109–326. · Zbl 0122.38603 · doi:10.2307/1970486 [7] A. Malcev, Nilpotent groups without torsion,Izv. Akad. Nauk. SSSR, Math.,13 (1949), 201–212. [8] J. Milnor, Morse Theory,Ann. of Math. Studies,51, Princeton, New Jersey, Princeton University Press, 1963. [9] M. Nagata, Imbedding of an abstract variety in a complete variety,J. Math. Kyoto,2 (1962), 1–10. · Zbl 0109.39503 [10] J.-P. Serre, Sur la topologie des variétés algébriques en caractéristiquep, Symposium internacional de topologiá algebrica, pp. 24–53, Mexico City, 1958. [11] D. Sullivan, Infinitesimal Calculations in Topology,Publ. math. I.H.E.S.,47 (1977), 269–331. · Zbl 0374.57002 [12] A. Weil,Introduction à l’étude des variétés kählériennes, Paris, Hermann, 1958. [13] H. Whitney,Geometric Integration Theory, Princeton, Princeton University Press, 1957. · Zbl 0083.28204 [14] P. Deligne, Théorie de Hodge, III,Publ. I.H.E.S.,44 (1974), 5–77. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.