zbMATH — the first resource for mathematics

The algebraic topology of smooth algebraic varieties. (English) Zbl 0401.14003

14F35 Homotopy theory and fundamental groups in algebraic geometry
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
55Q20 Homotopy groups of wedges, joins, and simple spaces
Full Text: DOI Numdam EuDML
[1] A. Bousfield andD. Kan, Homotopy limits, completions and localizations,Lecture Notes in Mathematics,304, Berlin-Heidelberg-New York, Springer, 1972. · Zbl 0259.55004
[2] A. Borel,Linear algebraic groups, New York, Benjamin, 1969. · Zbl 0206.49801
[3] P. Deligne, Théorie de Hodge, I,Actes du Congrès international des Mathématiciens,I, Nice, 1970, 425–430.
[4] P. Deligne, Théorie de Hodge, II,Publ. math. I.H.E.S.,40 (1971), 5–58.
[5] P. Deligne, P. Griffiths, J. Morgan andD. Sullivan, Real Homotopy theory of Kähler manifolds,Invent. math.,29 (1975), 245–274. · Zbl 0312.55011
[6] H. Rironaka, Resolution of signularities of an algebraic variety over a field of characteristic o,Ann. of Math.,79 (1964), 109–326. · Zbl 0122.38603
[7] A. Malcev, Nilpotent groups without torsion,Izv. Akad. Nauk. SSSR, Math.,13 (1949), 201–212.
[8] J. Milnor, Morse Theory,Ann. of Math. Studies,51, Princeton, New Jersey, Princeton University Press, 1963.
[9] M. Nagata, Imbedding of an abstract variety in a complete variety,J. Math. Kyoto,2 (1962), 1–10. · Zbl 0109.39503
[10] J.-P. Serre, Sur la topologie des variétés algébriques en caractéristiquep, Symposium internacional de topologiá algebrica, pp. 24–53, Mexico City, 1958.
[11] D. Sullivan, Infinitesimal Calculations in Topology,Publ. math. I.H.E.S.,47 (1977), 269–331. · Zbl 0374.57002
[12] A. Weil,Introduction à l’étude des variétés kählériennes, Paris, Hermann, 1958.
[13] H. Whitney,Geometric Integration Theory, Princeton, Princeton University Press, 1957. · Zbl 0083.28204
[14] P. Deligne, Théorie de Hodge, III,Publ. I.H.E.S.,44 (1974), 5–77.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.