×

zbMATH — the first resource for mathematics

Yoneda structures on 2-categories. (English) Zbl 0401.18004

MSC:
18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
18A30 Limits and colimits (products, sums, directed limits, pushouts, fiber products, equalizers, kernels, ends and coends, etc.)
18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Auderset, C, Adjonctions et monades au niveau des 2-categories, Cahiers topologie Géom. différentielle, 15, 3-20, (1974) · Zbl 0364.18007
[2] Borceux, F; Kelly, G.M, A notion of limit for enriched categories, Bull. Australian math. soc., 12, 49-72, (1975) · Zbl 0329.18011
[3] Day, B.J, On closed categories of functors, (), 1-38, 1-38
[4] Day, B.J; Kelly, G.M, Enriched functor categories, (), 178-191 · Zbl 0214.03202
[5] Diaconescu, R, Change of base for toposes with generators, J.pure appl. algebra, 6, 191-218, (1975) · Zbl 0353.18002
[6] Dubuc, E, Kan extensions in enriched category theory, () · Zbl 0228.18002
[7] Eilenberg, S; Kelly, G.M, Closed categories, (), 421-562 · Zbl 0192.10604
[8] Eilenberg, S; Moore, J.C, Adjoint functors and triples, Illinois J. math., 9, 381-398, (1965) · Zbl 0135.02103
[9] Freyd, P, Several new concepts, (), 196-241
[10] Gabriel, P; Ulmer, F, Lokal präsentierbare kategorien, () · Zbl 0225.18004
[11] Grothendieck, A; Verdier, J.L, Topos, (), 299-519 · Zbl 0256.18008
[12] Huber, P, Standard constructions in abelian categories, Math. ann., 146, 321-325, (1962) · Zbl 0101.40701
[13] Kelly, G.M, Adjunction for enriched categories, (), 166-177 · Zbl 0214.03201
[14] Kelly, G.M, Many variable functorial calculus. I, (), 66-105 · Zbl 0243.18015
[15] Kock, A; Wraith, G.C, Elementary toposes, Aarhus lecture notes, 30, (1971) · Zbl 0251.18015
[16] Lawvere, F.W, Equality in hyperdoctrines and comprehension schema as an adjoint functor, (), 1-14 · Zbl 0234.18002
[17] Lawvere, F.W, Metric spaces, generalised logic, and closed categories, () · Zbl 0218.18002
[18] Linton, F.E.J, An outline of functorial semantics, (), 7-52 · Zbl 0181.02802
[19] Linton, F.E.J, The multilinear yoneda lemmas, (), 209-229 · Zbl 0225.18009
[20] Lane, S.Mac, Categories for the working Mathematician, () · Zbl 0906.18001
[21] Street, R.H, The formal theory of monads, J. pure appl. algebra, 2, 149-168, (1972) · Zbl 0241.18003
[22] Street, R.H, Fibrations and Yoneda’s lemma in a 2-category, (), 104-133
[23] Street, R.H, Elementary cosmoi, (), 134-180
[24] Street, R.H, Limits indexed by category-valued 2-functors, J. pure appl. algebra, 8, 149-181, (1976) · Zbl 0335.18005
[25] Street, R.H, Cosmoi of internal categories, (1976), Preprint · Zbl 0393.18009
[26] Ulmer, F, Properties of dense and relative adjoint functors, J. algebra, 3, 77-95, (1968) · Zbl 0182.34403
[27] Ulmer, F, The adjoint functor theorem and the yoneda embedding, Illinois J. math., 15, 355-361, (1971) · Zbl 0248.18012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.