×

Induced and amenable ergodic actions of Lie groups. (English) Zbl 0401.22009


MSC:

22D40 Ergodic theory on groups
22E15 General properties and structure of real Lie groups
28D05 Measure-preserving transformations
46L55 Noncommutative dynamical systems
46L10 General theory of von Neumann algebras
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] W. AMBROSE , Representation of Ergodic Flows (Annals of Math., Vol. 42, 1941 , pp. 723-739). MR 3,52c | Zbl 0025.26901 | JFM 67.0421.01 · Zbl 0025.26901
[2] A. BOREL , Linear Algebraic Groups , Benjamin, New York, 1969 . MR 40 #4273 | Zbl 0186.33201 · Zbl 0186.33201
[3] J. DIXMIER , Représentations induites holomorphes des groupes resoluble algébriques (Bull. Soc. Math. France) Vol. 94, 1966 , pp. 181-206). Numdam | MR 34 #7724 | Zbl 0204.44101 · Zbl 0204.44101
[4] E. G. EFFROS , Transformation groups and C*-Algebras (Annals of Math., Vol. 81, 1965 , pp. 38-55). MR 30 #5175 | Zbl 0152.33203 · Zbl 0152.33203
[5] J. FELDMAN and C. C. MOORE , Ergodic Equivalence Relations, Cohomology, and von Neumann Algebras (Trans. Amer. Math. Soc., Vol. 234, 1977 , pp. 289-360). MR 58 #28261a | Zbl 0369.22009 · Zbl 0369.22009
[6] J. FELDMAN , P. HAHN , and C. C. MOORE , Orbit Structure and Countable Sections for Actions of Continuous Groups . (Advances in Math., Vol. 28, 1978 , pp. 186-230). MR 58 #11217 | Zbl 0392.28023 · Zbl 0392.28023
[7] H. FURSTENBERG , A Poisson Formula for Semi-Simple Lie Groups (Annals of Math., Vol. 77, 1963 , pp. 335-383). MR 26 #3820 | Zbl 0192.12704 · Zbl 0192.12704
[8] H. FURSTENBERG , Boundary Theory and Stochastic Processes on Homogeneous Spaces , in Harmonic Analysis on Homogeneous Spaces (Symposia in Pure Mathematics, Williamstown, Mass., 1972 ). Zbl 0289.22011 · Zbl 0289.22011
[9] Y. GUIVARCH , Croissance polynomials et périodes des fonctions harmoniques (Bull. Soc. Math. France, Vol. 101, 1973 , pp. 333-379). Numdam | MR 51 #5841 | Zbl 0294.43003 · Zbl 0294.43003
[10] G. W. MACKEY , Induced Representations of Locally Compact Groups, I (Annals of Math., Vol. 55, 1952 , pp. 101-139). MR 13,434a | Zbl 0046.11601 · Zbl 0046.11601
[11] G. W. MACKEY , Point Realizations of Transformation Groups , (Illinois J. Math., Vol. 6, 1962 , pp. 327-335). Article | MR 26 #1424 | Zbl 0178.17203 · Zbl 0178.17203
[12] G. W. MACKEY , Ergodic Theory and Virtual Groups (Math. Ann., Vol. 166, 1966 , pp. 187-207). MR 34 #1444 | Zbl 0178.38802 · Zbl 0178.38802
[13] G. W. MACKEY , Ergodic Theory and its Significance for Statistical Mechanics and Probability Theory (Advances in Math., Vol. 12, 1974 , pp. 178-268). MR 49 #10857 | Zbl 0326.60001 · Zbl 0326.60001
[14] C. C. MOORE , Ergodicity of Flows on Homogeneous Spaces (Amer. J. Math., Vol. 88, 1966 , pp. 154-178). MR 33 #1409 | Zbl 0148.37902 · Zbl 0148.37902
[15] A. RAMSAY , Virtual Groups and Group Actions (Advances in Math., Vol. 6, 1971 , pp. 253-322). MR 43 #7590 | Zbl 0216.14902 · Zbl 0216.14902
[16] C. SERIES , The Rohlin Theorem and Hyperfiniteness for Actions of Continuous Groups (to appear). · Zbl 0398.22013
[17] V. S. VARADARAJAN , Geometry of Quantum Theory , Vol. II, van Nostrand, Princeton, N. J., 1970 . MR 57 #11400 | Zbl 0194.28802 · Zbl 0194.28802
[18] R. J. ZIMMER , Extensions of Ergodic Group Actions (Illinois J. Math., Vol. 20, 1976 , pp. 373-409). Article | MR 53 #13522 | Zbl 0334.28015 · Zbl 0334.28015
[19] R. J. ZIMMER , Amenable Ergodic Actions, Hyperfinite Factors, and Poincaré Flows (Bull. Amer. Math. Soc., Vol. 83, 1977 , pp. 1078-1080). Article | MR 57 #591 | Zbl 0378.28008 · Zbl 0378.28008
[20] R. J. ZIMMER , Amenable Ergodic Group Actions and an Application to Poisson Boundaries of Random Walks (J. Funct. Anal., Vol. 27, 1978 , pp. 350-372). MR 57 #12775 | Zbl 0391.28011 · Zbl 0391.28011
[21] R. J. ZIMMER , On the von Neumann Algebra of an Ergodic Group Action (Proc. Amer. Math. Soc., Vol. 66, 1977 , pp. 289-293). MR 57 #592 | Zbl 0367.28013 · Zbl 0367.28013
[22] R. J. ZIMMER , Hyperfinite Factors and Amenable Ergodic Actions (Invent. Math., Vol. 41, 1977 , pp. 23-31). MR 57 #10438 | Zbl 0361.46061 · Zbl 0361.46061
[23] R. J. ZIMMER , Amenable Pairs of Groups and Ergodic Actions and the Associated von Neumann Algebras [Trans. Amer. Math. Soc. (to appear)]. Zbl 0408.22011 · Zbl 0408.22011
[24] R. J. ZIMMER , Orbit Spaces of Unitary Representations, Ergodic Theory, and Simple Lie Groups (Ann. of Math., Vol. 106, 1977 , pp. 573-588). MR 57 #6286 | Zbl 0393.22006 · Zbl 0393.22006
[25] P. HAHN , The \sigma -Representations of Amenable Groupoids , preprint. · Zbl 0453.46051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.