Kashiwara, Masaki On the holonomic systems of linear differential equations. II. (English) Zbl 0401.32005 Invent. Math. 49, 121-135 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 91 Documents MSC: 32C35 Analytic sheaves and cohomology groups 32C25 Analytic subsets and submanifolds 55N30 Sheaf cohomology in algebraic topology 58C10 Holomorphic maps on manifolds Keywords:Holonomic Systems Citations:Zbl 0313.58019 × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Bernstein, I.N.: The analytic continuation of generalized functions with respect to a parameter. Functional Anal. Appl.6, 26-40 (1972) [2] Grothendieck, A.: Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz Locaux et Globeaux (SGA 2). Amsterdam: North-Holland Publ. Co. 1968 · Zbl 0197.47202 [3] Hartshorne, R.: Local Cohomology, Lecture Notes in Math., 41. Berlin-Heidelberg-New York: Springer 1967 [4] Kashiwara, M.: An algebraic study of systems of partial differential equations, local theory of differential operators (Master’s thesis). Sugakushinkokai (in Japanese), 1970 [5] Kashiwara, M.: On the maximally overdetermined system of linear differential equations, I. Publ. R.I.M.S., Kyoto Univ.10, 563-579 (1975) · Zbl 0313.58019 · doi:10.2977/prims/1195192011 [6] Kashiwara, M.:B-functions and holonomic systems, rationality of roots ofb-functions. Inventiones Math.38, 33-53 (1976) · Zbl 0354.35082 · doi:10.1007/BF01390168 [7] Kashiwara, M., Kawai, T.: On the holonomic systems of micro-differential equations, III. in press (1978) · Zbl 0482.35060 [8] Le Jeune-Jalabert, M., Malgrange, B., Boutet de Monvel: Séminaire ?Opérateurs différentiels et pseudo-différentiels?, I, II, III, IV, Université Scientifique et Médical de Grenoble, Laboratoire de Math. Pures Associé au C.N.R.S., 1975-1976 [9] Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudodifferential equations, Lecture Notes in Math. Berlin-Heidelberg-New York: Springer287, 265-529 (1973) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.