×

Remarkable operators and commutation formulas on locally conformal Kähler manifolds. (English) Zbl 0401.53019


MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] S.I. Goldberg : Curvature and Homology . Academic Press, New York, 1962. · Zbl 0105.15601
[2] A. Gray and L.M. Hervella : The sixteen classes of almost Hermitian manifolds and their linear invariants (preprint). · Zbl 0444.53032
[3] S. Halperin and D. Lehmann : Cohomologies et classes caractéristiques des choux de Bruxelles . Diff. Topology and Geometry, Proc. Colloq. Dijon 1974.Lecture Notes in Math 484, Springer-Verlag, Berlin, 1975, 79-120. · Zbl 0313.57007
[4] P. Libermann : Sur les structures presque complexes et autres structures infinitésimales régulières . Bull Soc. Math. France, 83 (1955), 195-224. · Zbl 0064.41702
[5] A. Lichnerowicz : Théorie globale des connexions et des groupes d’holonomie , Edizione Cremonese, Roma, 1955. · Zbl 0116.39101
[6] I. Vaisman : Cohomology and Differential Forms , M. Dekker, Inc., New York, 1973. · Zbl 0267.58001
[7] I. Vaisman : On locally conformal almost Kähler manifolds , Israel J. of Math. 24 (1976), 338-351. · Zbl 0335.53055
[8] I. Vaisman : Locally conformal Kähler manifolds with parallel Lee form , Rendiconti di Mat ematica Roma (to appear). · Zbl 0447.53032
[9] A. Weil : Introduction à l’étude des variétés Kählériennes , Hermann, Paris, 1958. · Zbl 0137.41103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.