×

zbMATH — the first resource for mathematics

Untere Fehlerschranken für Regula-Falsi-Verfahren. (German) Zbl 0401.65036

MSC:
65J15 Numerical solutions to equations with nonlinear operators (do not use 65Hxx)
47J25 Iterative procedures involving nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. Alefeld, An exclusion theorem for the solutions of operator equations,Beiträge Numer. Math. 6 (1977), 7–10. · Zbl 0365.65039
[2] W. Burmeister, Inversionsfreie Verfahren zur Lösung nichtlinearer Operatorgleichungen,Z. Angew. Math. Mech. 52 (1972), 101–110.MR 45#9213 · Zbl 0291.65015 · doi:10.1002/zamm.19720520205
[3] J. E. Dennis, Toward a unified convergence theory for Newton-like methods,Nonlinear Functional Anal. and Appl. (Proc. Sem. Madison, Wis., 1970), Academic Press, 1971, 425–472.MR 43#4286
[4] W. B. Gragg andR. A. Tapia, Optimal error bounds for the Newton-Kantorovich theorem,SIAM J. Numer. Anal. 11 (1974), 10–13.MR 49#8334 · Zbl 0284.65042 · doi:10.1137/0711002
[5] W. Hofmann, Regula-falsi-Verfahren in Banachräumen, Diss. Univ. Hamburg, 1970.
[6] W. Hofmann, Konvergenzsätze für Regula-falsi-Verfahren,Arch. Rational Mech. Anal. 44 (1971–72), 296–309.MR 49#8324. · Zbl 0236.65037
[7] W. Hoyer, Das Majorantenprinzip bei Mehrschritt-Iterationsverfahren,Beiträge Number. Math. 2 (1974), 39–60. · Zbl 0282.65043
[8] J. W. Schmidt, Eine Übertragung der Regula falsi auf Gleichungen in Banachräumen I,Z. Angew. Math. Mech. 43 (1963), 1–8.MR 26#5442 · Zbl 0115.34002 · doi:10.1002/zamm.19630430102
[9] J. W. Schmidt, Eine Übertragung der Regula falsi auf Gleichungen in Banachräumen II,Z. Angew. Math. Mech. 43 (1963), 97–110.MR 27#616 · Zbl 0115.34002 · doi:10.1002/zamm.19630430302
[10] J. W. Schmidt, Regula-falsi-Verfahren mit konsistenter Steigung und Majorantenprinzip,Period. Math. Hungar. 5 (1974), 187–193.MR 50#8957 · Zbl 0291.65017 · doi:10.1007/BF02023198
[11] S. Ulm, Princip mažorant i metod hord (A majorant principle and the method of secants),Eesti NSV Tead. Akad. Toimetised Füüs.-Math. Techn.-tead. Seer 13 (1964), 217–227. (In Russian; Estonian and English summaries)MR 29#5369
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.