×

zbMATH — the first resource for mathematics

A comparison of three resequencing algorithms for the reduction of matrix profile and wavefront. (English) Zbl 0401.73082

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74-04 Software, source code, etc. for problems pertaining to mechanics of deformable solids
Software:
symrcm
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Finite Element Analysis: Fundamentals, Prentice-Hall, Englewood Cliffs, N. J. 1975.
[2] The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971.
[3] Akhras, Int. J. mum. Meth. Engng 10 pp 787– (1976)
[4] and , ’Element resequencing for frontal solutions’, The Mathematics of Finite Elements and Applications II (Ed. ), Academic Press, New York, 1975, pp. 535-541.
[5] Akyuz, AIAA J. 6 pp 728– (1968)
[6] Alway, Comput. J. 8 pp 264– (1965)
[7] and , ’Method for reducing the bandwidth of sparse symmetric matrices’, Proc IFIP Conf., North-Holland Amsterdam, 1246-1250 (1971).
[8] Baumann, IEEE Trans. Power app. and Syst. PAS-85 pp 1164– (1966)
[9] Berry, IEEE Trans. Circuit Theory CT-18 pp 40– (1971)
[10] Bykat, Int. J. num. Meth. Engng 11 pp 194– (1977)
[11] ’Ordered eliminations’, Power System Computation Conf., London (1963).
[12] Cheng, Computing 11 pp 103– (1977)
[13] Collins, Int. J. num. Meth. Engng 6 pp 345– (1973)
[14] ’Automated input data preparation for NASTRAN’, Goddard Space Flight Center Report X-321-69-237, Greenbelt, MD. (1969).
[15] Crane, ACM Trans. Math. Software 2 pp 375– (1976)
[16] Crose, J. Engng Mech. Div. ASCE 97 pp 163– (1971)
[17] and , ’Reducing the bandwidth of sparse symmetric matrices’, Proc. 24th Nat. Conf., Assn. for Computing Machinery, ACM Pub. P69, New York, 157-172 (1969).
[18] ’Ordered triangular factorization of matrices’, Proc. Power system computation Conf., Stockholm (1966).
[19] ’Computer implementation of the finite element method’, Ph. D. Dissertation, Tech. Rep. STAN-CS-71-208, Computer Sci. Dept., Stanford Univ., Stanford CA, 1971.
[20] ’An efficient band-oriented scheme for solving n by n grid problems’, AFIPS Conf. Proc. 41, 1972 Fall Joint Computer Conf., AFIPS Press, Montvale, N. J., pp. 1317-1320.
[21] George, SIAM J. Numer. Anal. 10 pp 345– (1973)
[22] George, SIAM J. Numer. Anal. 14 pp 161– (1977)
[23] and , ’An automatic partitioning and solution scheme for solving large sparse positive definite systems of linear algebraic equation’, CS-75-17, Dept. of Computer Sci., Univ. of Waterloo, Waterloo, Ontario (1975).
[24] George, SIAM J. Numer. Anal. 15 pp 297– (1978)
[25] Gibbs, ACM Trans. Math. Software 2 pp 378– (1976)
[26] Gibbs, SIAM J. Numer. Anal. 13 pp 236– (1961)
[27] Grooms, J. Struct. div. ASCE 98 pp 203– (1972)
[28] ’A new procedure for topologically controlled eliminations’, Proc. Fourth Power System Computation Conf, Grenoble (1972).
[29] Jewell, J. SIAM 9 pp 55– (1961)
[30] King, Int. J. num. Meth. Engng 2 pp 523– (1970)
[31] and , ’Relabeling algorithm to obtain a band-matrix from a sparse one’, Tech. Rep. PFL-3-72, Dept. Civil Engng, Univ. of Sherbroke, Quebec, Canada (1972).
[32] Levy, Jet Propulsion Laboratory Quart. Tech. Review 1 pp 61– (1971)
[33] and , ’Savings in NASTRAN decomposition time by sequencing to reduce active columns’, NASTRAN: Users’ Experiences, NASA TM X-2378, 627-631 (1971).
[34] ’Structural stiffness matrix wavefront resequencing program (WAVEFRONT)’, JPL Tech. Report 32-1526, XIV, 50-55 (1972).
[35] ’Bandwidth reduction for simulataneous equations in matrix analysis’, Babcock and Wilcox Company Report TP-535, Lynchbuirg, Virginia (1974).
[36] Ogbuobiri, IEEE Trans. Power App. and Syst. PAS-89 pp 141– (1970)
[37] ’Relabeling of finite-element meshes using a random process’, NASA TMX-2660, Lewis Research Center, Cleveland, Ohio (1972).
[38] Rodrigues, J. Struct. Div. ASCE 101 pp 361– (1975)
[39] ’Matrix bandwidth minimization’, Proc. 23rd Nat. Conf., Assn. for Computing Machinery, Brandon/Systems Press, Princeton, N. J., 585-595 (1968).
[40] Sato, IEEE Trans. Power app. and Syst. 82 pp 944– (1963)
[41] Silverberg, IEEE Trans. computers. C-17 pp 1173– (1968)
[42] Snay, Bull. Geod. 50 pp 341– (1976)
[43] Spillers, Q. Appl. Math. 23 pp 188– (1965)
[44] Spillers, J. Struct. Div. ASCE 94 pp 2521– (1968)
[45] Spillers, Q. Appl. Math. 26 pp 425– (1968)
[46] Tewarson, Computer J. 10 pp 300– (1967)
[47] ’Optimal ordering for sparsely cou-led subnetworks’, oneville Power Admin. Report, Portland, Oregon (1968).
[48] Tenney, IEEE trans. Automatic control AC-18 pp 333– (1973)
[49] and , ’Programming of sparsity-directed ordering schemes’, Proc. Power System computation Computation Conf., Cambridge, England (1975).
[50] Tinney, Proc. IEEE 55 pp 1801– (1967)
[51] ’Bandwidth minimization, reducibility, decomposition, and triangularization of sparse matrices’, Ph. D. Dissertation, Dept. of Computer and Information Sciences, Ohio State Univ., Columbus, 1973.
[52] , and , ’An empirical investigation of recordering and data management for finite element systems of equations’, ANL-8056, Argonne Nat. Lab., Argonne, Illinois, 1973.
[53] ’Several strategies for reducing the bandwidth of matrices’, in Sparse Matrices and Their applications (Ed. and ), Plenum Press, New York, 1972, 157-166.
[54] Dommel, IEEE Trans. Power App. Syst. PAS-87 pp 1866– (1968)
[55] ’Recent improvements to BANDIT’, NASTRAN: Users’ Experiences, NASA TM X-3278, 511-521 (1975).
[56] Gibbs, ACM Trans. Math. software 2 pp 322– (1976)
[57] Liu, SIAM J. Numer. Anal. 13 pp 198– (1976)
[58] and , ’Loss formula computation by optimal ordering techniques which exploit the sparsity of the network admittance matrix’, 1969 Midwest Power Symp., Univ. of Minnesota, Minneapolis (1969).
[59] Stott, Proc. IEE 118 (1971)
[60] Tinney, IEEE Trans. Power App. and Syst. PAS-86 pp 1449– (1967)
[61] and , ’Spasity-oriented network reduction’, Proc. Power Industry Computer Applications Conf. (Minneapolis, Minn.), 384-390 (1973).
[62] ’The NASTRAN theoritical manual’, NASA SP-221 (03), Washington, D. C. (1976).
[63] ’The BANDIT computer program for the reduction of matrix bandwidth for NASTRAN’, Rept. 3827, Naval Ship Research and Development Center, Bethesda, Md. (1972).
[64] ’BANDIT User’s guide’, TM-184-77-03. David W. Taylor Naval Ship Researchh and Development Center, Bethesda, MD. (1977).
[65] Computer Program Abstracts 10 (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.