×

zbMATH — the first resource for mathematics

Colouring problems. (English) Zbl 0402.05028

MSC:
05C15 Coloring of graphs and hypergraphs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. Appel and W. Haken,Every planar map is four colorable. Part I: discharging. Illinois J. of Math. 21 (1977), 429–490. · Zbl 0387.05009
[2] K. Appel, W. Haken and J. Koch,Every planar map is four colourable. Part II: reducibility. Illinois J of Math. 21 (1977), 491–567. · Zbl 0387.05010
[3] F. Bernhart,A digest of the Four Color Theorem. J. Graph Theory, 1 (1977), 207–225. · Zbl 0387.05012 · doi:10.1002/jgt.3190010305
[4] D. Blanuša,Problem Cetiriju Boja, Hrvatsko Prirodoslovno Društvo Glasnik, Mat-Fiz Astr., Ser. II, (1946), 31–42. (Croatian, French summary).
[5] R. L. Brooks,On colouring the nodes of a network. Proc. Cambridge Phil. Soc., 37 (1941) 194–197. · JFM 67.0733.02 · doi:10.1017/S030500410002168X
[6] Lewis Carroll,A Tangled Tale, Knot VIII.
[7] Lewis Carroll,The Hunting of the Snark, Fit the Eighth.
[8] B. T. Datta,Non-existence of six-dimensional tangential 2-blocks. J. Combinatorial Theory 21 (1976), 171–193. · Zbl 0329.05103 · doi:10.1016/0095-8956(76)90059-9
[9] Blanche Descartes,Network colourings, Math. Gazette 32 (1948) 67–69. · Zbl 0030.37601 · doi:10.2307/3610702
[10] Blanche Descartes,On some recent progress in combinatorics. J. Graph Theory 1 (1977), 192. · doi:10.1002/jgt.3190010303
[11] H. Dumpty. As reported by Lewis Carroll inThrough the Looking-glass, Chapter VI.
[12] H. Hadwiger.Ungelöste Probleme. Element Math. 13 (1958), 127–128.
[13] G. Hajos.Über eine Konstruktion nicht n-farbarer Graphen. Wiss. Zeitschr. Martin Luther Univ. Halle-Wittenberg A10 (1961) 116–117.
[14] W. Haken,An attempt to understand the Four Color Problem, J. Graph Theory 1 (1977), 193–206. · Zbl 0387.05011 · doi:10.1002/jgt.3190010304
[15] R. Isaacs,Infinite families of non-trivial trivalent graphs which are not Tait colorable. Amer. Math. Monthly, 82 (1975), 221–239. · Zbl 0311.05109 · doi:10.2307/2319844
[16] F. Jaeger,On nowhere-zero flows in multigraphs. Proc. Fifth British Combinatorial Conference, 373–378. (Utilitas Mathematica, Winnipeg, 1976). · Zbl 0324.90023
[17] O. Ore,The Four Color Problem, Academic Press, New York 1967. · Zbl 0149.21101
[18] G. Szekeres,Polyhedral decompositions of cubic graphs. Bull Austral. Math. Soc, 8 (1973) 367–387. · Zbl 0249.05111 · doi:10.1017/S0004972700042660
[19] W. T. Tutte,On the imbedding of linear graphs in surfaces. Proc. London Math. Soc., Ser. 2, 51 (1949), 474–483. · Zbl 0033.30803 · doi:10.1112/plms/s2-51.6.474
[20] W. T. Tutte,On the algebraic theory of graph colorings. J. Combinatorial Theory 1 (1966), 15–50. · Zbl 0139.41402 · doi:10.1016/S0021-9800(66)80004-2
[21] O. Veblen,An application of modular equations in Analysis Situs. Ann. of Math 14 (1912), 86–94. · JFM 43.0574.01 · doi:10.2307/1967604
[22] K. Wagner.Bemerkung zu Hadwigers Vermutung. Math. Ann., 141 (1960), 433–451. · Zbl 0096.17904 · doi:10.1007/BF01360256
[23] K. Wagner,Beweiss einer Abschwächung der Hadwiger-Vermutung. Math. Ann., 153 (1964), 139–141. · Zbl 0192.30002 · doi:10.1007/BF01361181
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.