×

zbMATH — the first resource for mathematics

On the type and cotype of Banach spaces. (English) Zbl 0402.46013

MSC:
46B20 Geometry and structure of normed linear spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] T. Figiel and W. B. Johnson,A uniformly convex Banach space which contains no l p, Compositio Math.29 (1974), 179–190. · Zbl 0301.46013
[2] J. Hoffmann-Jørgensen,Sums of independent Banach space valued random variables, Studia Math.52 (1974), 159–186. · Zbl 0265.60005
[3] R. C. James,Nonreflexive space of type 2, Israel J. Math.30 (1978), 1–13. · Zbl 0384.46004 · doi:10.1007/BF02760825
[4] R. C. James and J. Lindenstrauss,The Octahedral Problem for Banach Spaces, Proc. Seminar on Random Series, Convex Sets and Geometry of Banach Spaces, Århus, Denmark, 1974. · Zbl 0307.46011
[5] W. B. Johnson,A reflexive space which is not sufficiently Euclidean, Studia Math.55 (1976), 201–205. · Zbl 0362.46015
[6] W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafiri,Symmetric structures in Banach spaces, to appear in Mem. Amer. Math. Soc.
[7] J. L. Krivine,Sous espaces de dimension finite des espaces de Banach reticules, Ann. of Math.104 (1976), 1–29. · Zbl 0329.46008 · doi:10.2307/1971054
[8] J. Lindenstrauss and L. Tzafriri,Classical Banach Spaces II, Function Spaces, Springer-Verlag, Ergebnisse No. 97, Berlin-Heidelberg-New York, 1978. · Zbl 0403.46022
[9] B. Maurey,Type and cotype dans les espaces munis de structures locales inconditionnelles, Seminaire Maurey-Schwartz, Expose No. 25-25, École Polytechnique, Paris, 1973–74.
[10] B. Maurey and G. Pisier,Séries de variables aleatoires vectorielles independantes et propriétés geometrique des espaces de Banach, Studia Math.58 (1976), 45–90. · Zbl 0344.47014
[11] H. P. Rosenthal,On a theorem of J.L. Krivine concerning block finite-representability of l p in general Banach spaces, J. Functional Analysis28 (1978), 197–225. · Zbl 0387.46016 · doi:10.1016/0022-1236(78)90086-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.