Hirschberg, Daniel S. Algorithms for the longest common subsequence problem. (English) Zbl 0402.68041 J. Assoc. Comput. Mach. 24, 664-675 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 86 Documents MSC: 68Q25 Analysis of algorithms and problem complexity 68W99 Algorithms in computer science Keywords:Algorithms for the Longest Common Subsequence Problem; Time Complexity PDF BibTeX XML Cite \textit{D. S. Hirschberg}, J. Assoc. Comput. Mach. 24, 664--675 (1977; Zbl 0402.68041) Full Text: DOI OpenURL Online Encyclopedia of Integer Sequences: Triangle T(n,k) by rows, n >= 0, 0<=k<=n: T(n,k) = Sum_{i=0..n-k} binomial(n-k,i) *Sum_{j=0..k-i} binomial(i,j).