Morand, Henri; Ohayon, Roger Substructure variational analysis of the vibrations of coupled fluid- structure systems. Finite element results. (English) Zbl 0402.73052 Int. J. Numer. Methods Eng. 14, 741-755 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 28 Documents MSC: 74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.) 74S05 Finite element methods applied to problems in solid mechanics 70J10 Modal analysis in linear vibration theory Keywords:Harmonic Vibrations; Fluid-Structure Compound System; Finite Element Method; Acoustic Eigenmodes; Hydroelastic Modes; Axisymmetric Tank Example Problem PDF BibTeX XML Cite \textit{H. Morand} and \textit{R. Ohayon}, Int. J. Numer. Methods Eng. 14, 741--755 (1979; Zbl 0402.73052) Full Text: DOI OpenURL References: [1] Bettess, Int. J. Num. Meth. Engng 11 pp 1271– (1977) [2] ’The dynamic behaviour of liquids in moving containers’, NASA SP-106 (1966). [3] and , ’Le calcul des réservoirs élastiques partiellement remplis de liquide pour la preévision de l’effect pogo’, 23rd Astronautical Cong. Vienna, Austria (1972). [4] Berger, J. Math. Analysis and Applications 51 (1975) [5] La Mécanique des Milieux scontinus et le Calcul des Structures, Editions Eyrolles, 1977 (English edition to be published by North-Holland). [6] and , ’Internal pressure effects on the vibration of partially filled elastic tanks’, Proc. World Cong. Finite Element Meth. Struct. Mech., Bournemout, England (1975). [7] ’Liquid sloshing in an elastic container’, ASQSR 66-0943, California Institute of Technology, Pasadena, California (1966). [8] and , ’Variational formulations for the elasto-acoustic vibration problem: finite element results’, Proc 2nd Int. Symp. Finite Element Meth. Flow Problems, St. Margharita, Italy (1976). · Zbl 0442.76058 [9] and , ’Coupled vibrations of a structure submerged in a compressible fluid’, Proc Symp. finite Element Techniques, Institut für Statik und Dynamik der Luft-und Raumfahrtkonstruktionen. University of Stuttagart, Germany (1969). [10] The Finite Element Method, 3rd edn, McGraw-Hill, 1977. [11] Morand, Assoc. Technique Maritime et Aéronautique 47 (1976) [12] Morand, Assoc. Technique Maritime et Aéronautique 47 (1977) [13] , and , ’Méthodes de calcul des vibrations d’un systéme évolutif coupleé fluide-structure: Application au lanceur Ariane’, Proc. Conf. Innovative Num. Analysis Engng Sci., CETIM, Paris, France (1977). [14] and , ’An efficient variation-iteration Procedure applied to a mixed formulation of hydroelastic vibration problem. Finite lement results’, Symp. Application Computer Meth. Engng, University of Southern California, Los Angeles (1977). [15] Cours de Mécanique des Milieux Continus, Tome 1, Masson, France, 1973. [16] ’Some practical applications of acoustic finite elements’, Proc. World Cong. Finite Element Meth. Struct. Mech., Bournemouth, England (1975). [17] and , ’Structural-acoustic finite element analysis of the automobile passenger compartment’, SAE Paper 760184, Automotive Engng Cong. and Exposition, Detroit, Michigan (1976). [18] ’Acousto elasticity’, Princeton University AMS Report 1280, (1976). [19] and , ’Finite element analysis of the noise inside a model aircraft fuselage’, Euromech 96 Congress on Fluid-Structure Dynamic Interaction, University of Wales, Swansea, England (1977). [20] and , Les Inéquations en Mécannique et en Physique, Edn, Dunod, France, 1972. (1972). [21] and , Methods of Intermediate Problems for Eigenvalues, Academic Press, 1972. [22] and , ’User’s manual for the Rexbat program’, Lockheed Missile and Space Company, LMSC-D460625, Palo-Alto, U.S.A. (1976). [23] ’Deux théorèmes de congruence relatifs aux vibrations de liquides couplés à des structures’, Document ESA-SP129, 121-130 (1977). [24] and , ’Variational formulations of the hydrocapillary vibration problems. Finite element results’, Document ESA-SP129 105-119 (1977). [25] Analyse variationnelle des méthodes de sous-structuration dynamique, Publication ONERA (á para??tre). [26] and , ’Influence du ballottement dans les réservoirs des bouts d’ailes sur les modes propres de vabration d’un avion’, La Recherche Aérospatiale, no. 1745-5, 319-325 (1974). [27] and , An Introduction to the Mathematical Theory of Finite Elements, Wiley, New York, 1976. [28] Méthodes Mathématiques de la Mécanique Classique, Appendice 10, p. 433-446, Editions MIR, Moscou, U. S. S. R., 1976. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.