A theoretical approach to the problem of the most dangerous initial deflection shape in stability type structural problems. (English) Zbl 0402.73063


74K20 Plates
74G60 Bifurcation and buckling
74B20 Nonlinear elasticity
Full Text: EuDML


[1] Bauer L., Reiss E. L.: Nonlinear buckling of rectangular plates. J. Soc. Ind. Appl. Math., 13 (1965), 3, 603-625.
[2] Sadovský Z.: Rectangular thin plate in shear - theoretical solution. (in Slovak). Staveb. Čas., 25 (1977), 3, 197-228.
[3] Hlaváček I.: Einfluss der Form der Anfangskrümmung auf das Ausbeulen der gedrückten rechteckigen Platte. Acta Technica ČSAV, 7 (1962), 2, 174-206.
[4] Sadovský Z.: Influence of initial imperfections and boundary conditions on stability of shallow shells and thin plates. (in Slovak). Research rep., ÚSTARCH SAV, Bratislava Dec. 1975.
[5] Berger M. S.: On von Kármán’s equations and the buckling of a thin elastic plate, I. The clamped plate. Comm. Pure Appl. Math., 20 (1967), 687-719. · Zbl 0162.56405
[6] Berger M. S., Fife P. C.: Von Kármán’s equations and the buckling of a thin elastic plate, II. Plate with general edge conditions. Comm. Pure Appl. Math., 21 (1968), 227-241. · Zbl 0162.56501
[7] Vainberg M. M.: Variational methods for the study of nonlinear operators. (in Russian). Gostechizdat, Moscow 1956.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.