zbMATH — the first resource for mathematics

The two-dimensional adiabatic relaxation method for MHD modelling. (English) Zbl 0632.76126
The adiabatic relaxation method is extended to two dimensions using a moving finite element model. The MHD equations are split into ideal and diffusion parts by employing a fractional timestep. The ideal equations are expressed in variational form using Hamilton’s principle. Finite element discretisation of the variational principle leads to equations for studying equilibria, time dependent MHD and stability. It is shown that conjugate gradient accelerated SSOR is effective in solving the nonlinear minimisation problem arising in finding equilibria. Aligning the finite elements with flux surfaces causes surface averaged transport to emerge naturally from the diffusion part of the timestep.
MSC:
 76W05 Magnetohydrodynamics and electrohydrodynamics 76T99 Multiphase and multicomponent flows 49S05 Variational principles of physics (should also be assigned at least one other classification number in Section 49-XX) 70H99 Hamiltonian and Lagrangian mechanics
ERATO
Full Text:
References:
 [1] Roberts, K.V.; Potter, D.E., Methods comput. phys., 9, 339, (1970) [2] Hain, K.; Hain, G.; Roberts, K.V.; Köppendorfer, W., Z. naturforsch. A phys. phys. chem. kosmophys., 15, 1039, (1960) [3] Gruber, R.; Rappaz, J., Finite element methods in linear ideal magnetohydrodynamics, (1985), Springer-Verlag New York/Berlin · Zbl 0573.76001 [4] Watkins, M.L.; Hughes, M.H.; Roberts, K.V.; Keeping, P.M.; Killeen, J., Methods comput. phys., 16, 166, (1976) [5] Christiansen, J.P.; Roberts, K.V., Comput. phys. commun., 14, 423, (1978) [6] Sykes, A.; Wesson, J.A., Phys. rev. lett., 37, 140, (1976) [7] Schnack, D.; Killeen, J., J. comput. phys., 35, 110, (1980) [8] Morse, R.L., Methods comput. phys., 9, 213, (1970) [9] Brackbill, J.U., Methods comput. phys., 16, 1, (1976) [10] Berk, H.L.; Roberts, K.V., Methods comput. phys., 9, 87, (1970) [11] Potter, D., Methods comput. phys., 16, 43, (1976) [12] Anderson, D.V., J. comput. phys., 17, 246, (1975) [13] Byrne, R.N.; Klein, H.H., J. comput. phys., 26, 352, (1978) [14] Fritts, M.J.; Boris, J.P., J. comput. phys., 31, 173, (1979) [15] Lee-Hsiao; Eastwood, J.W., () [16] Roberts, K.V.; Christiansen, J.P.; Long, J.W., Comput. phys. commun., 10, 264, (1975) [17] Eastwood, J.W., Reading university computer science report RCS67, (1977), (unpublished) [18] Concus, P.; Golub, G.H.; O’Leary, D.P., (), 309 [19] Roberts, K.V., Comput. phys. commun., 7, 237, (1974) [20] Hughes, M.H.; Roberts, K.V., Comput. phys. commun., 29, 15, (1983) [21] Hockney, R.W.; Eastwood, J.W., Computer simulation using particles, (1981), McGraw-Hill New York · Zbl 0662.76002 [22] Bauer, F.; Betancourt, O.; Garbedian, P., A computational method in plasma physics, (1978), Springer-Verlag New York [23] Gruber, R.; Troyon, F.; Berger, D., Comput. phys. commun., 21, 323, (1981) [24] Gupta, R.P.; Panarella, E.; Silvester, P., () [25] Clark, R.A., () [26] Chance, M.S., J. comput. phys., 28, 1, (1978) [27] Strang, G.; Fix, G., An analysis of the finite element method, (1973), Prentice-Hall Englewood Cliffs, N.J · Zbl 0278.65116 [28] Grimm, R.C.; Greene, J.M.; Johnson, J.L., Methods comput. phys., 16, 253, (1976) [29] Mederink, J.A.; Van Der Vorst, H.A., Math. comput., 31, 148, (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.