Cernak, Stefan On some types of maximal l-subgroups of a lattice ordered group. (English) Zbl 0403.06011 Math. Slovaca 28, 349-359 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 Document MSC: 06F20 Ordered abelian groups, Riesz groups, ordered linear spaces Keywords:Abelian Lattice Ordered Groups; O-Completeness; Radical Class Citations:Zbl 0060.063; Zbl 0094.247; Zbl 0368.06013 PDFBibTeX XMLCite \textit{S. Cernak}, Math. Slovaca 28, 349--359 (1978; Zbl 0403.06011) Full Text: EuDML References: [1] ALLING N. L.: On ordered divisible groups. Trans. Amer. Math. Soc, 94, 1960, 498-514. · Zbl 0094.24703 · doi:10.2307/1993436 [2] BIRKHOFF G.: Lattice theory, third edition. Providence 1967. · Zbl 0153.02501 [3] CONRAD P.: Some structure theorems for lattice ordered groups. Trans. Amer. Math. Soc, 99, 1961, 212-240. · Zbl 0099.25401 · doi:10.2307/1993391 [4] ČERNÁK Š.: The Cantor extension of a lexicographic product of l-groups. Mat. Čas., 23, 1973, 97-102. · Zbl 0259.06019 [5] EVERETT C. J.: Sequence completion of lattice modules. Duke Math. J., 11, 1944, 109-119. · Zbl 0060.06301 · doi:10.1215/S0012-7094-44-01112-9 [6] ФУХС Л.: Частично упорядоченные алгебрические системы. Москва 1965. [7] JAKUBÍK J.: Radical mappings and radical classes of lattice ordered groups. · Zbl 0227.06005 [8] JAKUBÍK J.: Die Dedekindischen Schnitte im direkten Produkt von halbgeordeten Gruppen. Mat. fyz. Čas. SAV, 16, 4, 1966, 329-336. · Zbl 0154.02602 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.