×

Relative duality for quasi-coherent sheaves. (English) Zbl 0403.14003


MSC:

14F99 (Co)homology theory in algebraic geometry
14F20 Étale and other Grothendieck topologies and (co)homologies
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials

References:

[1] A. Altman and S. Kleiman : Introduction to Grothendieck Duality Theory . Lecture Notes in Math. 146, Springer (1970). · Zbl 0215.37201 · doi:10.1007/BFb0060932
[2] A. Altman and S. Kleiman : ” Compactifying the Picard scheme ”, (to appear in Adv. Math.). · Zbl 0427.14015 · doi:10.1016/0001-8708(80)90043-2
[3] P. Berthelot , et alii, Theorie des Intersections et Théorème de Riemann-Roch , Lecture Notes in Math. 225, Springer (1971). · Zbl 0218.14001
[4] P. Deligne and M. Rapoport : ” Les Schémas de Modules de Courbes Elliptiques ”, in Modular Functions of One Variable II , Lecture Notes in Math 349, Springer (1973). · Zbl 0281.14010
[5] M. Demazure and A. Grothendieck , Schémas en Groupes I , Lecture Notes in Math. 151, Springer (1970). · Zbl 0207.51401 · doi:10.1007/BFb0058993
[6] R. Godement , Topologie Algébrique et Théorie des Faisceaux , Hermann, Paris (1958). · Zbl 0080.16201
[7] A. Grothendieck , Théorème de dualité pour les faisceaux algébriques cohérents ”, Seminaire Bourbaki, 149 (May 1957). · Zbl 0227.14014
[8] A. Grothendieck , ” Technique de descente et théorèmes d’existence en géométrie algébrique IV. Les schémas de Hilbert ”, Séminaire Bourbaki 221 (May 1961). · Zbl 0236.14003
[9] A. Grothendieck and J. Dieudonné : Eléments de Géométrie Algébrique I , Grundlehren der math. Wissenschaften 166, Springer (1971). · Zbl 0203.23301
[10] A. Grothendieck and J. Dieudonné : Eléments de Géométrie Algébrique , Publ. Math. I.H.E.S., Nos. 8, 11, 17, 20, 24, 28, 32 (1961, ’61, ’63, ’64, ’65, ’66, ’67). | · Zbl 0203.23301
[11] R. Hartshorne : Residues and Duality , Lecture Notes in Math. 20, Springer (1966). · Zbl 0212.26101 · doi:10.1007/BFb0080482
[12] K. Lønsted and S. Kleiman : ” Basics on Families of Hyperelliptic Curves ”, Compositio Math., 38(1) (1979) 83-111. · Zbl 0406.14017
[13] S. Maclane : Categories for the Working Mathematician , Graduate Texts in Math. 5, Springer (1971). · Zbl 0232.18001
[14] A. Mattuck : ” Secant Bundles on Symmetric Products ”, American Journal Math., LXXXVII, 4 (1965), 779-797. · Zbl 0196.53503 · doi:10.2307/2373245
[15] D. Mumford : Lectures on Curves on an Algebraic Surface , Annals of Math. Studies No. 59, Princeton Univ. Press (1966). · Zbl 0187.42701 · doi:10.1515/9781400882069
[16] J.-L. Verdier : ” Duality dans la cohomologie des espaces localement compacts ”, Séminaire Bourbaki, 300 (Nov. 1965). · Zbl 0268.55006
[17] J.-L. Verdier : ” Base change for twisted inverse image of coherent sheaves ”, in Algebraic Geometry , Bombay 1968, Oxford (1969), 393-408. · Zbl 0202.19902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.