×

zbMATH — the first resource for mathematics

An elementary method in the study of nonnegative curvature. (English) Zbl 0403.53022

MSC:
53C20 Global Riemannian geometry, including pinching
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahlfors, L. V., An extension of Schwarz’s lemma.Trans. Amer. Math. Soc., 43 (1938), 359–364. · Zbl 0018.41002
[2] Andreotti, A. &Grauert, H., Theorèmes de finitude pour la cohomologie des espaces complexes.Bull. Soc. Math. France, 90 (1962), 193–259. · Zbl 0106.05501
[3] Calabi, E., An extension of E. Hopf’s maximum principle with an application to Riemannian geometry.Duke Math. J., 25 (1957), 45–56. · Zbl 0079.11801
[4] Cheeger, J. &Gromoll, D., The splitting theorem for manifolds of nonnegative curvature.J. Diff. Geom., 6 (1971), 119–128. · Zbl 0223.53033
[5] –, On the structure of complete manifolds of nonnegative curvature.Ann. of Math., 96 (1972), 413–443. · Zbl 0246.53049
[6] Eberlein, P. &O’Neill, B., Visibility manifolds,Pacific J. Math., 46 (1973), 45–109. · Zbl 0264.53026
[7] Elencwajg, G., Pseudoconvexité locale dans les variétés Kähleriennes.Annales de L’Institute Fourier, 25 (1976), 295–314.
[8] Feller, W., Über die Lösungen der linearen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Typus.Math. Ann., 102 (1930), 641–653. · JFM 56.0419.01
[9] Greene, R. E. &Wu, H., On the subharmonicity and plurisubharmonicity of geodesically convex functions,Indiana Univ. Math. J., 22 (1973), 641–653. · Zbl 0235.53039
[10] –, Integrals of subharmonic functions on manifolds of nonnegative curvature.Inventiones Math., 27 (1974), 265–298. · Zbl 0342.31003
[11] –, Approximation theorems, Cconvex exhaustions and manifolds of positive curvature.Bulletin Amer. Math. Soc., 81 (1975), 101–104. · Zbl 0307.53026
[12] –, Analysis on noncompact Kähler manifolds. InSeveral Complex Variables, Proc. Symposia Pure Math. Volume 30, Part 2, Amer. Math. Soc. Publications, Providence, R.I. (1977), 69–100.
[13] –,C convex functions and manifolds of positive curvature.Acta Math., 137 (1976). 209–245. · Zbl 0372.53019
[14] –, On Käler manifolds of positive bisectional curvature and a theorem of Hartogs.Abh. Math. Sem. Univ. Hamburg, 47 (1978), 171–185. · Zbl 0431.32017
[15] Greene, R. E. & Wu, H.,C approximations of convex, subharmonic and plurisubharmonic functions.Ann. Sci. École Norm. Sup., to appear. · Zbl 0415.31001
[16] Narasimhan, R., The Levi problem for complex spaces II.Math. Ann., 146 (1962), 195–216. · Zbl 0131.30801
[17] Poor, W. A., Some results on nonnegatively curved manifolds.J. Diff. Geom., 9 (1974), 583–600. · Zbl 0292.53037
[18] Richeberg, R., Stetige streng pseudoconvexe Funktionen.Math. Ann., 175 (1968), 257–286. · Zbl 0153.15401
[19] Suzuki, O., Pseudoconvex domains on a Kähler manifold with positive holomorphic bisectional curvature.Publ. RIMS, Kyoto Univ. 12 (1976), 191–214. · Zbl 0356.32014
[20] Takeuchi, A., Domaines pseudoconvexes sur les variétés Kähleriennes.J. Math. Kyoto Univ., 6-3 (1967), 323–357. · Zbl 0179.12203
[21] Wu, H., On the volume of a noncompact manifold.Ark. Mat., to appear. · Zbl 0488.53031
[22] Yau, S. T., On the heat kernel of a complete Riemannian manifold.J. Math. Pures Appl., 57 (1978), 191–201. · Zbl 0405.35025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.