Grosch, Chester E.; Orszag, Steven A. Numerical solution of problems in unbounded regions: coordinate transforms. (English) Zbl 0403.65050 J. Comput. Phys. 25, 273-295 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 70 Documents MSC: 65Z05 Applications to the sciences 76R99 Diffusion and convection 74H45 Vibrations in dynamical problems in solid mechanics 76D10 Boundary-layer theory, separation and reattachment, higher-order effects 35L05 Wave equation 35Q99 Partial differential equations of mathematical physics and other areas of application Keywords:Examples; One-Dimensional Diffusion Equation; Anharmonic Oscillator Eigenvalue Problem; Orr-Sommerfeld Eigenvalue Problem; Blasius Boundary Layer Flow; Falkner-Skan Equation; Wave Equation; Burgers’ Equation PDF BibTeX XML Cite \textit{C. E. Grosch} and \textit{S. A. Orszag}, J. Comput. Phys. 25, 273--295 (1977; Zbl 0403.65050) Full Text: DOI OpenURL References: [1] van de Vooren, A.I.; Dijkstra, D., J. eng. math., 4, 9, (1970) [2] Davis, R.T., J. fluid mech., 51, 417, (1972) [3] Batchelor, G.K., An introduction to fluid dynamics, (), 191 · Zbl 0152.44402 [4] Orszag, S.A., J. fluid mech., 50, 689, (1971) [5] Gottlieb, D.; Orszag, S.A., Numerical analysis of spectral methods: theory and applications, (1977), Soc. Ind. and Appl. Math Philadelphia · Zbl 0412.65058 [6] Wilkinson, J.H., The algebraic eigenvalue problem, (1965), Oxford Univ. Press London · Zbl 0258.65037 [7] Jordinson, R., Phys. fluids, 14, 2535, (1971) [8] Mack, L.M., J. fluid mech., 73, 497, (1976) [9] Stewartson, K., Theory of lammar boundary layers in compressible fluids, (1964), Oxford Univ. Press London · Zbl 0114.18705 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.