×

zbMATH — the first resource for mathematics

One-step and extrapolation methods for differential-algebraic systems. (English) Zbl 0635.65083
This paper analyzes one-step methods for differential-algebraic equations \(By'=f(y)\) \((y\in {\mathbb{R}}^ m\), \(B\in {\mathbb{R}}^{m\times m}\) is singular) with \(s=1\), where s is the index of nilpotency of the matrix pencil \([B-\lambda f_ y]\). An extrapolation algorithm based on semi- implicit Euler discretization is derived and its performance is compared with that of the codes of L. Petzold [A description of DASSL: a differential/algebraic system solver. Proc. IMACS World Congress 1982 (to appear)] and A. C. Hindmarsh [LSODE and LSODI, two new initial value ordinary differential equation solvers. ACM-SIGNUM Newsletter 15, 10-11 (1980)]. The test examples are taken from chemical combustion.
Reviewer: V.A.Velev

MSC:
65L05 Numerical methods for initial value problems
34A34 Nonlinear ordinary differential equations and systems, general theory
80A25 Combustion
Software:
DASSL
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bader, G., Deuflhard, P.: A Semi-Implicit Midpoint Rule for Stiff Systems of Ordinary Differential Equations. Numer. Math.41, 373-398 (1983) · Zbl 0522.65050 · doi:10.1007/BF01418331
[2] Deuflhard, P.: Recent Progress in Extrapolation Methods for Ordinary Differential Equations. SIAM Rev.27, 505-535 (1985) · Zbl 0602.65047 · doi:10.1137/1027140
[3] Deuflhard, P.: Order and Stepsize Control in Extrapolation Methods. Numer. Math.41, 399-422 (1983) · Zbl 0543.65049 · doi:10.1007/BF01418332
[4] Ebert, K.H., Ederer, H.J., Isbarn, G., Nowak, U.: The thermal decomposition ofn-Hexane. Kinetics, mechanism, and simulation. II. Univ. Heidelberg, SFB 123: Tech. Rep. 109 (1981)
[5] Esser, C., Maas, U., Warnatz, J.; Chemistry of the Auto-Ignition in Hydrocarbon-Air Mixtures up to Octane and its Relation to Engine Knock (Preliminary Abbreviated Version), submitted to 10th International Colloquium on Gas Dynamics of Explosions and Reactive Systems. Berkeley, CA (1985)
[6] Gantmacher, F.: The Theory of Matrices, vol. 2, New York, Chelsea (1959) · Zbl 0085.01001
[7] Gear, C.W., Petzold, L.: ODE Methods for the Solution of Differential Algebraic Systems. SIAM J. Numer. Anal.21, 716-728 (1984) · Zbl 0557.65053 · doi:10.1137/0721048
[8] Hindmarsh, A.C.: LSODE and LSODI, two new initial value ordinary differential equation solvers. ACM-SIGNUM Newsletter15, 10-11 (1980) · doi:10.1145/1218052.1218054
[9] Hairer, E., Lubich, C.: Asymptotic Expansions of the Global Error of Fixed-Stepsize Methods. Numeer. Math.45, 345-360 (1984) · Zbl 0571.65066 · doi:10.1007/BF01391413
[10] Lötstedt, P., Petzold, L.: Numerical Solution of Nonlinear Differential Equations with Algebraic Constraints. SANDIA Livermore: Tech. Rep. SAND 83-8877 (1983) · Zbl 0601.65060
[11] März, R.: Multistep methods for initial value problems in implicit differential-algebraic equations. Berlin, DDR, Humboldt-Universität, Sektion Mathematik: Preprint Nr. 22 (1981). Beiträge zur Numer. Math.12, 107-123 (1984) · Zbl 0533.65043
[12] März, R.: On numerical integration methods for implicit ordinary differential equations and differential-algebraic equations. Wiss. Beiträge Univ. Jena, Proc. Kolloquium ?Numerische Behandlung von Differentialgleichungen?. June 1982, pp. 1-15 (1983)
[13] März, R.: On correctness and numerical treatment of boundary value problems in DAE’s. Humboldt-Univ. zu Berlin, Sektion Mathematik, Preprint 73 (1984)
[14] Petzold, L.: Differential/Algebraic Equations are not ODE’s. SANDIA Livermore: Tech. Rep. SAND 81-8668 (1981). SIAM J. Stat. Sci. Comput.3, 367-384 (1984) · Zbl 0482.65041 · doi:10.1137/0903023
[15] Petzold, L.R.: Order Results for Implicit Runge-Kutta Methods Applied to Differential/Algebraic Systems. SANDIA Livermore: Tech. Rep. SAND 84-8838 (1984) · Zbl 0635.65084
[16] Petzold, L.: A Description of DASSL: a Differential/Algebraic System Solver. Proc. IMACS World Congress 1982 (to appear)
[17] Rheinboldt, W.C.: Differential-algebraic Systems as Differential Equations on Manifolds. Univ. Pittsburgh, Dept. Math. Stat., Tech. Rep. ICMA-83-55 (1983). Math. Comput.43, 473-482 (1985) · Zbl 0581.65058
[18] Sincovec, R.F., Erisman, A.M., Yip, E.L., Epton, M.A.: Analysis of Descriptor Systems Using Numerical Algorithms. IEEE Trans. Autom. Control AC26, 139-147 (1981) · Zbl 0495.93027 · doi:10.1109/TAC.1981.1102560
[19] Warnatz, J.: Homogene Elementarreaktionen und deren Zusammenwirken in Verbrennungsprozessen. BWK,37 (1985) Nr. 1-2-Jan.Feb.
[20] Zugck, J.: Numerische Behandlung linear-impliziter Differentialgleichungen mit Hilfe von Extrapolationsmethoden. Univ. Heidelberg, Inst. Angew. Math.: Diplomarbeit (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.