×

zbMATH — the first resource for mathematics

Qualitative methods in bifurcation theory. (English) Zbl 0404.35010

MSC:
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
57R45 Singularities of differentiable mappings in differential topology
35B32 Bifurcations in context of PDEs
74B20 Nonlinear elasticity
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. · Zbl 0393.70001
[2] J. C. Alexander and James A. Yorke, Global bifurcations of periodic orbits, Amer. J. Math. 100 (1978), no. 2, 263 – 292. · Zbl 0386.34040
[3] Stuart S. Antman, Bifurcation problems for nonlinearly elastic structures, Applications of bifurcation theory (Proc. Advanced Sem., Univ. Wisconsin, Madison, Wis., 1976) Academic Press, New York, 1977, pp. 73 – 125. Publ. Math. Res. Center, No. 38.
[4] Stuart S. Antman and Kathleen B. Jordan, Qualitative aspects of the spatial deformation of non-linearly elastic rods, Proc. Roy. Soc. Edinburgh Sect. A 73 (1975), 85 – 105. · Zbl 0351.73076
[5] Stuart S. Antman and Ernest R. Carbone, Shear and necking instabilities in nonlinear elasticity, J. Elasticity 7 (1977), no. 2, 125 – 151 (English, with French summary). · Zbl 0356.73048
[6] Stuart S. Antman and Gerald Rosenfeld, Global behavior of buckled states of nonlinearly elastic rods, SIAM Rev. 20 (1978), no. 3, 513 – 566. · Zbl 0395.73039
[7] Judith M. Arms and Jerrold E. Marsden, The absence of Killing fields is necessary for linearization stability of Einstein’s equations, Indiana Univ. Math. J. 28 (1979), no. 1, 119 – 125. · Zbl 0405.53046
[8] V. I. Arnol\(^{\prime}\)d, Lectures on bifurcations and versal families, Uspehi Mat. Nauk 27 (1972), no. 5(167), 119 – 184 (Russian). A series of articles on the theory of singularities of smooth mappings.
[9] Stephen Bancroft, Jack K. Hale, and Daniel Sweet, Alternative problems for nonlinear functional equations, J. Differential Equations 4 (1968), 40 – 56. · Zbl 0159.20001
[10] Louis Bauer, Herbert B. Keller, and Edward L. Reiss, Multiple eigenvalues lead to secondary bifurcation, SIAM Rev. 17 (1975), 101 – 122. · Zbl 0276.73027
[11] T. B. Benjamin, Dynamics of a system of articulated pipes conveying fluid. I. Theory., Proc. Roy. Soc. Ser. A 261 (1961), 457 – 486. · Zbl 0104.42002
[12] T. Brooke Benjamin, The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics, Applications of methods of functional analysis to problems in mechanics (Joint Sympos., IUTAM/IMU, Marseille, 1975) Springer, Berlin, 1976, pp. 8 – 29. Lecture Notes in Math., 503.
[13] M. S. Berger, Applications of global analysis to specific nonlinear eigenvalue problems, Rocky Mountain J. Math. 3 (1973), 319 – 354. Rocky Mountain Consortium Symposium on Nonlinear Eigenvalue Problems (Santa Fe, N.M., 1971). · Zbl 0266.47059
[14] Melvyn S. Berger, On vonKármán’s equations and the buckling of a thin elastic plate. I. The clamped plate, Comm. Pure Appl. Math. 20 (1967), 687 – 719. · Zbl 0162.56405
[15] Gianfranco Capriz and Paolo Podio Guidugli, On Signorini’s perturbation method in finite elasticity, Arch. Rational Mech. Anal. 57 (1974), 1 – 30. · Zbl 0315.73062
[16] Lamberto Cesari, Functional analysis, nonlinear differential equations, and the alternative method, Nonlinear functional analysis and differential equations (Proc. Conf., Mich. State Univ., East Lansing, Mich., 1975) Marcel Dekker, New York, 1976, pp. 1 – 197. Lecture Notes in Pure and Appl. Math., Vol. 19. · Zbl 0343.47038
[17] D. R. J. Chillingworth, Differential topology with a view to applications, Pitman Publishing, London-San Francisco, Calif.-Melbourne, 1976. Research Notes in Mathematics, No. 9. · Zbl 0336.58001
[18] Shui Nee Chow, Jack K. Hale, and John Mallet-Paret, Applications of generic bifurcations. I, Arch. Rational Mech. Anal. 59 (1975), no. 2, 159 – 188. · Zbl 0328.47036
[19] Shui Nee Chow, Jack K. Hale, and John Mallet-Paret, Applications of generic bifurcation. II, Arch. Rational Mech. Anal. 62 (1976), no. 3, 209 – 235. · Zbl 0346.47050
[20] Shui Nee Chow and John Mallet-Paret, The Fuller index and global Hopf bifurcation, J. Differential Equations 29 (1978), no. 1, 66 – 85. · Zbl 0369.34020
[21] Shui Nee Chow, John Mallet-Paret, and James A. Yorke, Global Hopf bifurcation from a multiple eigenvalue, Nonlinear Anal. 2 (1978), no. 6, 753 – 763. · Zbl 0407.47039
[22] Ivar Stakgold, Daniel D. Joseph, and David H. Sattinger , Nonlinear problems in the physical sciences and biology, Lecture Notes in Mathematics, Vol. 322, Springer-Verlag, Berlin-New York, 1973. · Zbl 0254.00025
[23] Donald S. Cohen, Bifurcation from multiple complex eigenvalues, J. Math. Anal. Appl. 57 (1977), no. 3, 505 – 521. · Zbl 0348.34042
[24] Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321 – 340. · Zbl 0219.46015
[25] Michael G. Crandall and Paul H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161 – 180. · Zbl 0275.47044
[26] E. N. Dancer, Bifurcation theory in real Banach space, Proc. London Math. Soc. (3) 23 (1971), 699 – 734. · Zbl 0227.47050
[27] E. N. Dancer, Global solution branches for positive mappings, Arch. Rational Mech. Anal. 52 (1973), 181 – 192. · Zbl 0275.47043
[28] R. W. Dickey, Dynamic stability of equilibrium states of the extensible beam, Proc. Amer. Math. Soc. 41 (1973), 94 – 102. · Zbl 0284.35047
[29] R. W. Dickey, Bifurcation problems in nonlinear elasticity, Pitman Publishing, London-San Francisco, Calif.-Melbourne, 1976. Research Notes in Mathematics, No. 3. · Zbl 0335.73012
[30] J. J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math. 27 (1974), 207 – 281. · Zbl 0285.35010
[31] Edward R. Fadell and Paul H. Rabinowitz, Bifurcation for odd potential operators and an alternative topological index, J. Functional Analysis 26 (1977), no. 1, 48 – 67. · Zbl 0363.47029
[32] Arthur E. Fischer and Jerrold E. Marsden, Linearization stability of nonlinear partial differential equations, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 219 – 263. · Zbl 0274.58003
[33] Arthur E. Fischer and Jerrold E. Marsden, Deformations of the scalar curvature, Duke Math. J. 42 (1975), no. 3, 519 – 547. · Zbl 0336.53032
[34] C. Foiaş and R. Temam, Structure of the set of stationary solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 30 (1977), no. 2, 149 – 164. · Zbl 0335.35077
[35] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer-Verlag, New York-Heidelberg, 1973. Graduate Texts in Mathematics, Vol. 14. · Zbl 0294.58004
[36] Martin Golubitsky, An introduction to catastrophe theory and its applications, SIAM Rev. 20 (1978), no. 2, 352 – 387. · Zbl 0389.58007
[37] M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math. 32 (1979), no. 1, 21 – 98. · Zbl 0409.58007
[38] Detlef Gromoll and Wolfgang Meyer, On differentiable functions with isolated critical points, Topology 8 (1969), 361 – 369. · Zbl 0212.28903
[39] John Guckenheimer, Catastrophes and partial differential equations, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 2, 31 – 59 (English, with French summary). Colloque International sur l\(^{\prime}\)Analyse et la Topologie Différentielle (Colloq. Internat. CNRS, No. 210, Strasbourg, 1972). · Zbl 0271.35006
[40] Morton E. Gurtin and Richard C. MacCamy, Non-linear age-dependent population dynamics, Arch. Rational Mech. Anal. 54 (1974), 281 – 300. · Zbl 0286.92005
[41] G. J. Habetler and B. J. Matkowsky, On the validity of a nonlinear dynamic stability theory, Arch. Rational Mech. Anal. 57 (1975), 166 – 188. · Zbl 0312.35005
[42] Jack K. Hale, Oscillations in nonlinear systems, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1963. · Zbl 0115.07401
[43] J. K. Hale, Generic bifurcation with applications, Nonlinear analysis and mechanics: Heriot-Watt Symposium (Edinburgh, 1976), Vol. I, Pitman, London, 1977, pp. 59 – 157. Res. Notes in Math., No. 17.
[44] William S. Hall, The bifurcation of solutions in Banach spaces, Trans. Amer. Math. Soc. 161 (1971), 207 – 218. · Zbl 0225.47005
[45] B. Hassard and Y. H. Wan, Bifurcation formulae derived from center manifold theory, J. Math. Anal. Appl. 63 (1978), no. 1, 297 – 312. · Zbl 0435.34034
[46] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. · Zbl 0355.58009
[47] P. J. Holmes, Bifurcations to divergence and flutter in flow-induced oscillations: a finite dimensional analysis, J. Sound Vibration 53 (1977), no. 4, 471 – 503. · Zbl 0363.73059
[48] P. Holmes, A nonlinear oscillator with a strange attractor, Philos. Trans. Roy. Soc. London Ser. A 292 (1979), no. 1394, 419 – 448. · Zbl 0423.34049
[49] Philip Holmes and Jerrold Marsden, Bifurcations to divergence and flutter in flow-induced oscillations: an infinite-dimensional analysis, Control of distributed parameter systems (Proc. Second IFAC Sympos., Coventry, 1977) IFAC, Düsseldorf, 1978, pp. 133 – 145. · Zbl 0406.58024
[50] Jorge Ize, Bifurcation theory for Fredholm operators, Mem. Amer. Math. Soc. 7 (1976), no. 174, viii+128. · Zbl 0338.47032
[51] Daniel D. Joseph, Stability of fluid motions. I, Springer-Verlag, Berlin-New York, 1976. Springer Tracts in Natural Philosophy, Vol. 27. · Zbl 0345.76022
[52] James P. Keener, Perturbed bifurcation theory at multiple eigenvalues, Arch. Rational Mech. Anal. 56 (1974/75), 348 – 366. · Zbl 0299.35071
[53] James P. Keener and Herbert B. Keller, Perturbed bifurcation theory, Arch. Rational Mech. Anal. 50 (1973), 159 – 175. · Zbl 0254.47080
[54] H. B. Keller and W. F. Langford, Iterations, perturbations and multiplicities for nonlinear bifurcation problems, Arch. Rational Mech. Anal. 48 (1972), 83 – 108. · Zbl 0249.47058
[55] Hansjörg Kielhöfer, Stability and semilinear evolution equations in Hilbert space, Arch. Rational Mech. Anal. 57 (1975), 150 – 165. · Zbl 0337.34056
[56] Klaus Kirchgässner, Multiple eigenvalue bifurcation for holomorphic mappings, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Academic Press, New York, 1971, pp. 69 – 99. · Zbl 0311.47028
[57] George H. Knightly and D. Sather, On nonuniqueness of solutions of the von Kármán equations, Arch. Rational Mech. Anal. 36 (1970), 65 – 78. · Zbl 0188.57603
[58] George H. Knightly and D. Sather, Nonlinear buckled states of rectangular plates, Arch. Rational Mech. Anal. 54 (1974), 356 – 372. · Zbl 0301.73009
[59] George H. Knightly and D. Sather, Existence and stability of axisymmetric buckled states of spherical shells, Arch. Rational Mech. Anal. 63 (1976/77), no. 4, 305 – 319. · Zbl 0358.73065
[60] W. T. Koiter, Elastic stability and post-buckling behavior, Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962) Univ. of Wisconsin Press, Madison, Wis., 1962, pp. 257 – 275.
[61] M. A. Krasnosel’skii, Topological methods in the theory of nonlinear integral equations, Translated by A. H. Armstrong; translation edited by J. Burlak. A Pergamon Press Book, The Macmillan Co., New York, 1964.
[62] Nicolaas H. Kuiper, Morse relations for curvature and tightness, Proceedings of Liverpool Singularities Symposium, II (1969/1970), Springer, Berlin, 1971, pp. 77 – 89. Lecture Notes in Math., Vol. 209.
[63] K. A. Landman and S. Rosenblat, Bifurcation from a multiple eigenvalue and stability of solutions, SIAM J. Appl. Math. 34 (1978), no. 4, 743 – 759. · Zbl 0416.58009
[64] John MacBain, Global bifurcation theorems for noncompact operators, Bull. Amer. Math. Soc. 80 (1974), 1005 – 1009. · Zbl 0295.47061
[65] J. B. McLeod and D. H. Sattinger, Loss of stability and bifurcation at a double eigenvalue, J. Functional Analysis 14 (1973), 62 – 84. · Zbl 0275.47045
[66] J. B. McLeod and R. E. L. Turner, Bifurcation for non-differentiable operators with an application to elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 1, 1 – 45. · Zbl 0356.47030
[67] R. J. Magnus, On the local structure of the zero-set of a Banach space valued mapping, J. Functional Analysis 22 (1976), no. 1, 58 – 72. · Zbl 0321.47042
[68] R. J. Magnus, A generalization of multiplicity and the problem of bifurcation, Proc. London Math. Soc. (3) 32 (1976), no. 2, 251 – 278. · Zbl 0316.47042
[69] John Mallet-Paret, Buckling of cylindrical shells with small curvature, Quart. Appl. Math. 35 (1977/78), no. 3, 383 – 400. · Zbl 0402.73043
[70] Jerry Marsden, Attempts to relate the Navier-Stokes equations to turbulence, Turbulence Seminar (Univ. Calif., Berkeley, Calif., 1976/1977) Springer, Berlin, 1977, pp. 1 – 22. Lecture Notes in Math., Vol. 615.
[71] J. E. Marsden and T. J. R. Hughes, Topics in the mathematical foundations of elasticity, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. II, Res. Notes in Math., vol. 27, Pitman, Boston, Mass.-London, 1978, pp. 30 – 285.
[72] J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications, Springer-Verlag, New York, 1976. With contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt and S. Smale; Applied Mathematical Sciences, Vol. 19. · Zbl 0346.58007
[73] Bernard J. Matkowsky and Edward L. Reiss, Singular perturbations of bifurcations, SIAM J. Appl. Math. 33 (1977), no. 2, 230 – 255. · Zbl 0379.35007
[74] J. Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. · Zbl 0108.10401
[75] Vincent Moncrief, Space-time symmetries and linearization stability of the Einstein equations. II, J. Mathematical Phys. 17 (1976), no. 10, 1893 – 1902.
[76] J. Moser, Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math. 29 (1976), no. 6, 724 – 747. · Zbl 0346.34024
[77] L. Nirenberg, Topics in nonlinear functional analysis, Courant Institute of Mathematical Sciences, New York University, New York, 1974. With a chapter by E. Zehnder; Notes by R. A. Artino; Lecture Notes, 1973 – 1974.
[78] Roger D. Nussbaum, A Hopf global bifurcation theorem for retarded functional differential equations, Trans. Amer. Math. Soc. 238 (1978), 139 – 164. · Zbl 0389.34050
[79] George H. Pimbley Jr., Eigenfunction branches of nonlinear operators, and their bifurcations., Lecture Notes in Mathematics, Vol. 104, Springer-Verlag, Berlin-New York, 1969. · Zbl 0182.18802
[80] Tim Poston and Ian Stewart, Catastrophe theory and its applications, Pitman, London-San Francisco, Calif.-Melbourne: distributed by Fearon-Pitman Publishers, Inc., Belmont, Calif., 1978. With an appendix by D. R. Olsen, S. R. Carter and A. Rockwood; Surveys and Reference Works in Mathematics, No. 2. · Zbl 0382.58006
[81] Michel Potier-Ferry, Perturbed bifurcation theory, J. Differential Equations 33 (1979), no. 1, 112 – 146. · Zbl 0399.35006
[82] A. J. Pritchard and W. T. F. Blakeley, Perturbation results and their applications to problems in structural dynamics, Applications of methods of functional analysis to problems in mechanics (Joint Sympos., IUTAM/IMU, Marseille, 1975) Springer, Berlin, 1976, pp. 438 – 449. Lecture Notes in Math., 503.
[83] Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487 – 513. · Zbl 0212.16504
[84] Paul H. Rabinowitz, A bifurcation theorem for potential operators, J. Functional Analysis 25 (1977), no. 4, 412 – 424. · Zbl 0369.47038
[85] Paul H. Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math. 31 (1978), no. 1, 31 – 68. · Zbl 0341.35051
[86] Michael Reeken, Stability of critical points under small perturbations. II. Analytic theory, Manuscripta Math. 8 (1973), 69 – 92. · Zbl 0248.58004
[87] Edward L. Reiss and Bernard J. Matkowsky, Nonlinear dynamic buckling of a compressed elastic column, Quart. Appl. Math. 29 (1971), 245 – 260. · Zbl 0224.73064
[88] D. Sather, Branching of solutions of nonlinear equations, Rocky Mountain J. Math. 3 (1973), 203 – 250. Rocky Mountain Consortium Symposium on Nonlinear Eigenvalue Problems (Santa Fe, N.M., 1971). · Zbl 0254.47079
[89] D. Sather, Branching and stability for nonlinear shells, Applications of methods of functional analysis to problems in mechanics (Joint Sympos., IUTAM/IMU, Marseille, 1975) Springer, Berlin, 1976, pp. 462 – 473. Lecture Notes in Math., 503.
[90] D. Sather, Bifurcation and stability for a class of shells, Arch. Rational Mech. Anal. 63 (1976), no. 3, 295 – 304 (1977). · Zbl 0365.73089
[91] David H. Sattinger, Topics in stability and bifurcation theory, Lecture Notes in Mathematics, Vol. 309, Springer-Verlag, Berlin-New York, 1973. · Zbl 0248.35003
[92] D. H. Sattinger, Pattern formation in convective phenomena, Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975) Springer, Berlin, 1976, pp. 159 – 173. Lecture Notes in Math., Vol. 565.
[93] Irving Segal, Non-linear semi-groups, Ann. of Math. (2) 78 (1963), 339 – 364. · Zbl 0204.16004
[94] M. J. Sewell, Some mechanical examples of catastrophe theory, Bull. Inst. Math. Appl. 12 (1976), no. 6, 163 – 172.
[95] Michael J. Sewell, Degenerate duality, catastrophes and saddle functionals, Duality and complementarity in mechanics of solids (School-Conf. Duality Problems of Mech. Deformable Bodies, Jabłonna, 1977) Ossolineum, Wrocław, 1979, pp. 273 – 349.
[96] M. Shearer, Bifurcation from a multiple eigenvalue, Ordinary and partial differential equations (Proc. Fourth Conf., Univ. Dundee, Dundee, 1976) Springer, Berlin, 1976, pp. 417 – 424. Lecture Notes in Math., Vol. 564. · Zbl 0349.47052
[97] M. Shearer, Small solutions of a non-linear equation in Banach space for a degenerate case, Proc. Roy. Soc. Edinburgh Sect. A 79 (1977/78), no. 1-2, 35 – 49. · Zbl 0384.47039
[98] M. Shearer, Bifurcation in the neighbourhood of a non-isolated singular point, Israel J. Math. 30 (1978), no. 4, 363 – 381. · Zbl 0387.47043
[99] S. Smale, Topology and mechanics. I, Invent. Math. 10 (1970), 305 – 331. · Zbl 0202.23201
[100] Ivar Stakgold, Branching of solutions of nonlinear equations, SIAM Rev. 13 (1971), 289 – 332. · Zbl 0199.20503
[101] Francesco Stoppelli, Sull’esistenza di soluzioni delle equazioni dell’elastostatica isoterma nel caso di sollecitazioni dotate di assi di equilibrio. II, III, Ricerche Mat. 7 (1958), 71 – 101, 138 – 152 (Italian). · Zbl 0097.17301
[102] C. A. Stuart, Some bifurcation theory for \?-set contractions, Proc. London Math. Soc. (3) 27 (1973), 531 – 550. · Zbl 0268.47064
[103] Floris Takens, Some remarks on the Böhme-Berger bifurcation theorem, Math. Z. 129 (1972), 359 – 364. · Zbl 0237.47032
[104] Floris Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 47 – 100. · Zbl 0279.58009
[105] René Thom, Stabilité structurelle et morphogénèse, W. A. Benjamin, Inc., Reading, Mass., 1972 (French). Essai d’une théorie générale des modèles; Mathematical Physics Monograph Series. René Thom, Structural stability and morphogenesis, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1976. An outline of a general theory of models; Translated from the French by D. H. Fowler; With a foreword by C. H. Waddington; Second printing.
[106] J. M. T. Thompson and G. W. Hunt, A general theory of elastic stability, Wiley-Interscience [John Wiley & Sons], London-New York-Sydney, 1973. · Zbl 0351.73066
[107] John M. T. Thompson and Giles W. Hunt, Towards a unified bifurcation theory, Z. Angew. Math. Phys. 26 (1975), no. 5, 581 – 603 (English, with German summary). · Zbl 0359.70032
[108] J. F. Toland, Global bifurcation theory via Galerkin’s method, Nonlinear Anal. 1 (1976/77), no. 3, 305 – 317. With an appendix by J. R. L. Webb. · Zbl 0477.47036
[109] A. J. Tromba, Almost-Riemannian structures on Banach manifolds: the Morse lemma and the Darboux theorem, Canad. J. Math. 28 (1976), no. 3, 640 – 652. · Zbl 0345.58005
[110] A. J. Tromba, Fredholm vector fields and a transversality theorem, J. Functional Analysis 23 (1976), no. 4, 362 – 368. · Zbl 0341.58005
[111] A. J. Tromba, A general approach to Morse theory, J. Differential Geometry 12 (1977), no. 1, 47 – 85. · Zbl 0344.58012
[112] C. Truesdell and W. Noll, The nonlinear field theories of mechanics, 2nd ed., Springer-Verlag, Berlin, 1992. · Zbl 0779.73004
[113] R. E. L. Turner, Transversality and cone maps, Arch. Rational Mech. Anal. 58 (1975), 151 – 179. · Zbl 0321.47044
[114] K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math. 98 (1976), no. 4, 1059 – 1078. · Zbl 0355.58017
[115] M. M. Vaĭnberg and V. A. Trenogin, The Ljapunov and Schmidt methods in the theory of non-linear equations and their subsequent development, Uspehi Mat. Nauk 17 (1962), no. 2 (104), 13 – 75 (Russian).
[116] A. Vanderbauwhede, Generic and nongeneric bifurcation for the von Kármán equations, J. Math. Anal. Appl. 66 (1978), no. 3, 550 – 573. · Zbl 0416.73036
[117] Yieh Hei Wan, On the uniqueness of invariant manifolds, J. Differential Equations 24 (1977), no. 2, 268 – 273. · Zbl 0362.58010
[118] Yieh Hei Wan, Generic deformations of varieties, Trans. Amer. Math. Soc. 259 (1980), no. 1, 107 – 119. · Zbl 0452.58010
[119] C. C. Wang and C. Truesdell, Introduction to rational elasticity, Noordhoff International Publishing, Leyden, 1973. Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics of Continua. · Zbl 0308.73001
[120] Gordon Wassermann, Stability of unfoldings, Lecture Notes in Mathematics, Vol. 393, Springer-Verlag, Berlin-New York, 1974. · Zbl 0288.57017
[121] Alan Weinstein, Bifurcations and Hamilton’s principle, Math. Z. 159 (1978), no. 3, 235 – 248. · Zbl 0366.58003
[122] David Westreich, Banach space bifurcation theory, Trans. Amer. Math. Soc. 171 (1972), 135 – 156. · Zbl 0219.47059
[123] Stephen A. Williams, A connection between the Cesari and Leray-Schauder methods, Michigan Math. J. 15 (1968), 441 – 448. · Zbl 0174.45601
[124] P. Hilton , Structural stability, the theory of catastrophes, and applications in the sciences, Lecture Notes in Mathematics, Vol. 525, Springer-Verlag, Berlin-New York, 1976. · Zbl 0322.00015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.