Differential equations for the Baker-Akhiezer functions of algebraic curves. (English) Zbl 0404.35030


35J10 Schrödinger operator, Schrödinger equation
35G20 Nonlinear higher-order PDEs
35Q99 Partial differential equations of mathematical physics and other areas of application
35B99 Qualitative properties of solutions to partial differential equations


Zbl 0385.35019
Full Text: DOI


[1] I. M. Krichever, ”Integration of nonlinear equations by methods of algebraic geometry,” Funkts. Anal. Prilozhen.,11, No. 1, 15–31 (1977). · Zbl 0346.35028
[2] I. M. Gel’fand and L. A. Dikii, ”The resolvent and Hamiltonian systems,” Funkts. Anal. Prilozhen.,11, No. 2, 11–27 (1977).
[3] V. B. Matveev, ”Abelian functions and solutions,” Preprint No. 373, Inst. Fiz. Teor. Uniw. Wroclaw. (1976).
[4] B. A. Dubrovin, ”The periodic problem for the Korteweg–de Vries equation in the class of finite-zone potentials,” Funkts. Anal. Prilozhen.,9, No. 3, 41–51 (1975). · Zbl 0316.30019
[5] V. A. Andreev, FIAN Preprint No. 26 (1976).
[6] A. R. Its, ”Inversion of hyperelliptic integrals and integration of nonlinear differential equations,” Vestn. Leningr. Gos. Univ.,7, No. 2, 37–46 (1976). · Zbl 0336.35025
[7] V. O. Kozel and V. P. Kotlyarov, ”Almost-periodic solutions of the equation utt uxx + sin u = 0,” Dokl. Akad. Nauk Ukr. SSR, Ser. A,10, 878–881 (1976). · Zbl 0337.35003
[8] I. V. Cherednik, ”A method for obtaining operators almost commuting with a given operator,” Usp. Mat. Nauk,32, No. 5, 168 (1977).
[9] I. V. Cherednik, ”On a generalization of the KdV and sin-Gordon equations,” Funkts. Anal. Prilozhen.,12, No. 4 (1978). · Zbl 0369.14013
[10] O. R. Its and V. P. Kotlyarov, ”Explicit formulas for solutions of the nonlinear Schrödinger equation,” Dokl. Akad. Nauk Ukr. SSR,11, Ser. A, 965–968 (1976). · Zbl 0341.35050
[11] Yu. I. Manin, ”Algebraic aspects of nonlinear differential equations,” in: Contemporary Problems in Mathematics, Progress in Science and Technology [in Russian], VINITI, Moscow (1978), pp. 5–152.
[12] M. A. Shubin, ”Algebraic aspects of the theory of pseudodifferential operators and the Lax equations,” VINITI Abstract No. 157, deposited 10/II 1978.
[13] A. Neveu and N. Papanicolaou, ”Integrability of the classical [ \([\bar \psi _i \psi _i ]_2^2 and [\bar \psi _i \psi _i ]_2^2 - [\bar \psi _i \gamma _5 \psi _i ]_2^2\) interactions,” preprint, Inst. Advanced Study, Princeton.
[14] J. L. Burchnall and T. W. Chaundy, ”Commutative ordinary differential operators,” Proc. R. Soc. London, Ser. A,118, 557–583 (1928). · JFM 54.0439.01
[15] H. F. Baker, ”Note on the foregoing paper ’Commutative ordinary differential operators’ by J. L. Burchnall and T. W. Chaundy,” Proc. R. Soc. London, Ser. A,118, 584–593 (1928). · JFM 54.0439.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.