Zenisek, Alexander Curved triangular finite \(C^ m\)-elements. (English) Zbl 0404.35041 Apl. Mat. 23, 346-377 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 14 Documents MSC: 35J40 Boundary value problems for higher-order elliptic equations 65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems 65N99 Numerical methods for partial differential equations, boundary value problems 35A35 Theoretical approximation in context of PDEs 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs Keywords:generalized Bell’s Cm-elements; approximate solution; rate of convergence × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Bramble J. H., Zlámal M.: Triangular elements in the finite element method. Math. Comp. 24 (1970), 809-820. · Zbl 0226.65073 · doi:10.2307/2004615 [2] Ciarlet P. G., Raviart P. A.: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), pp. 409-474, Academic Press, New York 1972. · Zbl 0262.65070 [3] Ciarlet P. G.: Numerical Analysis of the Finite Element Method. Université de Montréal, 1975. [4] Holuša L., Kratochvíl J., Zlámal M., Ženíšek A.: The Finite Element Method. Technical Report. Computing Center of the Technical University of Brno, 1970. [5] Kratochvíl J., Ženíšek A., Zlámal M.: A simple algorithm for the stiffness matrix of triangular plate bending finite elements. Int. J. numer. Meth. Engng. 3 (1971), 553 - 563. · Zbl 0248.73029 · doi:10.1002/nme.1620030409 [6] Mansfield L.: Approximation of the boundary in the finite element solution of fourth order problems. SIAM J. Numer. Anal. 15 (1978), the June issue. · Zbl 0391.65047 · doi:10.1137/0715037 [7] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. · Zbl 1225.35003 [8] Stroud A. H.: Approximate Calculation of Multiple Integrals. Prentice-Hall., Englewood Cliffs, N. J., 1971. · Zbl 0379.65013 [9] Zlámal M.: The finite element method in domains with curved boundaries. Int. J. numer. Meth. Engng. 5 (1973), 367-373. · Zbl 0254.65073 · doi:10.1002/nme.1620050307 [10] Zlámal M.: Curved elements in the finite element method. I. SIAM J. Numer. Anal. 10(1973), 229-240. · Zbl 0285.65067 · doi:10.1137/0710022 [11] Zlámal M.: Curved elements in the finite element method. II. SlAM J. Numer. Anal. 1.1 (1974), 347-362. · Zbl 0277.65064 · doi:10.1137/0711031 [12] Ženíšek A.: Interpolation polynomials on the triangle. Numer. Math. 15 (1970), 283 - 296. · Zbl 0216.38901 · doi:10.1007/BF02165119 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.