×

zbMATH — the first resource for mathematics

Interpolation by quadratic splines. (English) Zbl 0404.41001

MSC:
41A05 Interpolation in approximation theory
41A15 Spline approximation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] de Boor, C, Quadratic spline interpolation and the sharpness of Lebesque’s inequality, J. approximation theory, 17, 348-358, (1976) · Zbl 0338.41014
[2] Demko, S, Local approximation properties of spline projections, J. approximation theory, 19, 176-185, (1977) · Zbl 0361.41019
[3] Kammerer, W.J; Reddien, G.W; Varga, R.S, Quadratic interpolatory splines, Numer. math., 22, 241-259, (1974) · Zbl 0271.65006
[4] Kershaw, D, Inequalities on the elements of the inverse of a certain tri-diagonal matrix, Math. comp., 24, 155-158, (1970) · Zbl 0229.15012
[5] Marsden, M.J, Cubic spline interpolation of continuous functions, J. approximation theory, 10, 103-111, (1974) · Zbl 0281.41002
[6] Marsden, M.J, Quadratic spline interpolation, Bull. amer. math. soc., 80, 903-906, (1974) · Zbl 0295.41005
[7] Schultz, M.H; Varga, R.S, L-splines, Numer. math., 10, 345-369, (1967) · Zbl 0183.44402
[8] Schwartz, H.R; Rutishauser, H; Stiefel, E, Numerical analysis of symmetric matrices, (1973), Prentice-Hall Englewood Cliffs, N. J
[9] Sharma, A; Tzimbalario, J, Quadratic splines, J. approximation theory, 19, 186-193, (1977) · Zbl 0354.41006
[10] Varga, R.S, Matrix iterative analysis, (1962), Prentice-Hall Englewood Cliffs, N.J · Zbl 0133.08602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.