×

zbMATH — the first resource for mathematics

Simultaneous approximation in scales of Banach spaces. (English) Zbl 0404.41005

MSC:
41A15 Spline approximation
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
41A63 Multidimensional problems (should also be assigned at least one other classification number from Section 41-XX)
41A25 Rate of convergence, degree of approximation
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ivo Babuška, The finite element method with penalty, Math. Comp. 27 (1973), 221 – 228. · Zbl 0299.65057
[2] I. Babuška and R. B. Kellogg, Nonuniform error estimates for the finite element method, SIAM J. Numer. Anal. 12 (1975), no. 6, 868 – 875. · Zbl 0339.65062 · doi:10.1137/0712064 · doi.org
[3] Garth A. Baker, Simplified proofs of error estimates for the least squares method for Dirichlet’s problem, Math. Comp. 27 (1973), 229 – 235. · Zbl 0297.65058
[4] James H. Bramble and Alfred H. Schatz, Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions, Comm. Pure Appl. Math. 23 (1970), 653 – 675. · Zbl 0204.11102 · doi:10.1002/cpa.3160230408 · doi.org
[5] J. H. Bramble and A. H. Schatz, Least squares methods for 2\?th order elliptic boundary-value problems, Math. Comp. 25 (1971), 1 – 32. · Zbl 0216.49202
[6] James H. Bramble and Vidar Thomée, Discrete time Galerkin methods for a parabolic boundary value problem, Ann. Mat. Pura Appl. (4) 101 (1974), 115 – 152. · Zbl 0306.65073 · doi:10.1007/BF02417101 · doi.org
[7] Paul L. Butzer and Hubert Berens, Semi-groups of operators and approximation, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York Inc., New York, 1967. · Zbl 0164.43702
[8] Jim Douglas Jr. and Todd Dupont, Galerkin methods for parabolic equations with nonlinear boundary conditions, Numer. Math. 20 (1972/73), 213 – 237. · Zbl 0234.65096 · doi:10.1007/BF01436565 · doi.org
[9] J. L. LIONS & E. MAGENES , Non-homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, Berlin and New York, 1972. · Zbl 0223.35039
[10] Frank Natterer, The finite element method for ill-posed problems, RAIRO Anal. Numér. 11 (1977), no. 3, 271 – 278. · Zbl 0369.65012
[11] Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937 – 958. · Zbl 0298.65071
[12] P.-A. Raviart, The use of numerical integration in finite element methods for solving parabolic equations, Topics in numerical analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, 1972) Academic Press, London, 1973, pp. 233 – 264.
[13] Martin H. Schultz, \?² error bounds for the Rayleigh-Ritz-Galerkin method, SIAM J. Numer. Anal. 8 (1971), 737 – 748. · Zbl 0285.65070 · doi:10.1137/0708067 · doi.org
[14] Ridgway Scott, Applications of Banach space interpolation to finite element theory, Functional analysis methods in numerical analysis (Proc. Special Session, Annual Meeting, Amer. Math. Soc., St. Louis, Mo., 1977) Lecture Notes in Math., vol. 701, Springer, Berlin, 1979, pp. 298 – 318.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.