Aubert, G.; Tahraoui, R. Théoremes d’existence pour des problèmes du calcul des variations du type: \(\text{Inf}\int^L_0f(x,u'(x))dx\) et \(\text{Inf} \int^L_0f(x,u(x),u'(x))dx\). (French) Zbl 0404.49001 J. Differ. Equations 33, 1-15 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 16 Documents MSC: 49J05 Existence theories for free problems in one independent variable Keywords:Free Variational Problems Citations:Zbl 0378.49001 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] G. Aubert et R. Tahraoui; G. Aubert et R. Tahraoui · Zbl 0435.49001 [2] Ekeland, I.; Temam, R., Analyse convexe et Problèmes variationels (1976), Dunod-Gauthier-Villars: Dunod-Gauthier-Villars Paris [3] Ekeland, I., Duality in non convex optimization and calculus of variations, Report, University of Wisconsin (1976) [4] J. F. Tolland; J. F. Tolland [5] Stampacchia, G., Equations elliptiques du second ordre à coefficients discontinus (1966), Presses de l’Université de Montréal: Presses de l’Université de Montréal Montréal · Zbl 0151.15501 [6] Tartar, L., Cours université de Wisconsin (1975) [7] Aubert, G.; Tahraoui, R., C. R. Acad. Sci. Paris Sér. A, 285, 355-356 (1977) · Zbl 0362.49003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.