×

zbMATH — the first resource for mathematics

Several stability properties of the class of asymptotic martingales. (English) Zbl 0404.60053

MSC:
60G48 Generalizations of martingales
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Austin, D.G., Edgar, G.A., Ionescu Tulcea, A.: Pointwise convergence in terms of expectations. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 30, 17-26 (1974) · Zbl 0276.60034 · doi:10.1007/BF00532860
[2] Baxter, J.R.: Pointwise in terms of weak convergence. Proc. Amer. Math. Soc. 46, 395-398 (1974) · Zbl 0329.60029 · doi:10.1090/S0002-9939-1974-0380968-7
[3] Bellow, A.: Stability properties of the class of asymptotic martingales. Bull. Amer. Math. Soc., Vol. 82, No. 2, 338-390 (1976) · Zbl 0365.60042 · doi:10.1090/S0002-9904-1976-14053-0
[4] Bellow, A.: On vector-valued asymptotic martingales. Proc. Nat. Acad. Sci. U.S.A., Vol. 73, No. 6, 1798-1799 (1976) · Zbl 0366.60067 · doi:10.1073/pnas.73.6.1798
[5] Bourbaki, N.: Fonctions d’une variable réelle. Paris: Hermann 1949 · Zbl 0036.16801
[6] Chacon, R.V.: A ?stopped? proof of convergence. Advances in Math. 14, 365-368 (1974) · Zbl 0308.60018 · doi:10.1016/0001-8708(74)90038-3
[7] Chacon, R.V., Sucheston, L.: On convergence of vector-valued asymptotic martingales. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 33, 55-59 (1975) · Zbl 0297.60005 · doi:10.1007/BF00539861
[8] Chatterji, S.D.: Martingale convergence and the Radon-Nikodym theorem. Math. Scand. 22, 21-41 (1968) · Zbl 0175.14503
[9] Doob, J.L.: Stochastic Processes. New York: Wiley 1953 · Zbl 0053.26802
[10] Dvoretzky, A., Rogers, C.A.: Absolute and unconditional convergence in normed linear spaces. Proc. Nat. Acad. Sci. U.S.A. 36, 192-197 (1950) · Zbl 0036.36303 · doi:10.1073/pnas.36.3.192
[11] Dvoretzky, A.: On stopping time directed convergence. Bull. Amer. Math. Soc., Vol. 82, No. 2, 347-349 (1976) · Zbl 0371.60055 · doi:10.1090/S0002-9904-1976-14060-8
[12] Dunford, N., Schwartz, J.T.: Linear Operators I. New York: Interscience 1958 · Zbl 0084.10402
[13] Edgar, G.A., Sucheston, L.: Amarts: A class of asymptotic martingales (Discrete parameter). J. Multivariate Anal. vol. 6, 193-221 (1976) · Zbl 0336.60033 · doi:10.1016/0047-259X(76)90031-2
[14] Fisk, D.L.: Quasi-martingales. Trans. Amer. Math. Soc. 120, 369-389 (1965) · Zbl 0133.40303 · doi:10.1090/S0002-9947-1965-0192542-5
[15] Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups. Amer. Math. Soc. Colloquium Publ. XXXI, 1957 · Zbl 0078.10004
[16] Ionescu Tulcea, A., Ionescu Tulcea, C.: Abstract ergodic theorems. Trans. Amer. Math. Soc. 107, 107-124 (1963) · Zbl 0119.32701 · doi:10.2307/1993870
[17] Krickeberg, K.: Probability theory. Reading, Mass.: Addison-Wesley 1965 · Zbl 0154.18507
[18] Mertens, J.F.: Théorie des processus stochastiques généraux, applications aux surmartingales. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 22, 45-68 (1972) · Zbl 0236.60033 · doi:10.1007/BF00538905
[19] Meyer, P.A.: Probability and Potentials. Waltham, Mass.: Blaisdell 1966 · Zbl 0138.10401
[20] Meyer, P.A.: Le retournement du temps d’aprés Chung et Walsh. Séminaire de Probabilités V, Lecture Notes in Math. 191. Berlin-Heidelberg-New York: Springer 1971
[21] Neveu, J.: Mathematical Foundations of the Calculus of Probability. San Francisco: Holden-Day 1965 · Zbl 0137.11301
[22] Neveu, J.: Martingales à Temps Discret. Paris: Masson 1972 · Zbl 0235.60010
[23] Orey, S.: F-processes. Proc. 5th Berkeley Sympos. Math. Statist. Probab. II1, Univ. Calif. 1965/1966, 301-313
[24] Ornstein, D.S.: A remark on the Birkhoff ergodic theorem. Illinois J. Math. 15, 77-79 (1971) · Zbl 0212.40102
[25] Rao, M.M.: Quasi-martingales. Math. Scand. 24, 79-92 (1969) · Zbl 0193.45502
[26] Sudderth, W.D.: A ?Fatou Equation? for randomly stopped variables. Math. Stat. 42, 2143-2146 (1971) · Zbl 0226.60069 · doi:10.1214/aoms/1177693082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.