Le Potier, Joseph Fibres stables de rang 2 sur \(\mathbb{P}_2(\mathbb{C})\). (French) Zbl 0405.14008 Math. Ann. 241, 217-256 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 21 Documents MSC: 14D20 Algebraic moduli problems, moduli of vector bundles 32L05 Holomorphic bundles and generalizations 57R20 Characteristic classes and numbers in differential topology 14F05 Sheaves, derived categories of sheaves, etc. (MSC2010) 14F35 Homotopy theory and fundamental groups in algebraic geometry Keywords:Moduli Space; Vector Bundles; Chern Classes; Descent; Homotopy Groups Citations:Zbl 0174.529 PDF BibTeX XML Cite \textit{J. Le Potier}, Math. Ann. 241, 217--256 (1979; Zbl 0405.14008) Full Text: DOI EuDML OpenURL References: [1] Barth, W.: Some properties of rank-2 vector bundles on ? n . Math. Ann.226, 125-150 (1977) · Zbl 0417.32013 [2] Barth, W.: Moduli of vector bundles on the projective plane. Inventiones math.42, 63-91 (1977) · Zbl 0386.14005 [3] Maruyama, M.: Stables vector bundles on an algebraic surface. Nagoya math. J.58, 25-68 (1975) · Zbl 0337.14026 [4] Maruyama, M.: Moduli of stables sheaves. II (preprint, p. 149) Kyoto University · Zbl 0395.14006 [5] Mumford, D.: Geometric invariant theory. Berlin, Heidelberg, New York: Springer 1965 · Zbl 0147.39304 [6] Mumford, D., Newstead, P.E.: Periods of a moduli space of bundles on curves. Amer. J. Math.90, 1200-1208 (1968) · Zbl 0174.52902 [7] Newstead, P.E.: A non-existence theorem for families of stables bundles. J. London Math. Soc.6, 259-266 (1973) · Zbl 0248.14007 [8] Newstead, P.E.: Topological properties of some spaces of stables bundles. Topology6, 241-262 (1967) · Zbl 0201.23401 [9] Serre, J.P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier6, 1-42 (1956) [10] Schwarzenberger, R.L.E.: Vector bundles on the projective plane. Proc. London Math. Soc.11, 623-640 (1961) · Zbl 0212.26004 [11] Whithey, H.: Differentiables manifolds. Ann. of Math.37, 645-680 (1936) · Zbl 0015.32001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.