Fibres stables de rang 2 sur \(\mathbb{P}_2(\mathbb{C})\). (French) Zbl 0405.14008


14D20 Algebraic moduli problems, moduli of vector bundles
32L05 Holomorphic bundles and generalizations
57R20 Characteristic classes and numbers in differential topology
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14F35 Homotopy theory and fundamental groups in algebraic geometry


Zbl 0174.529
Full Text: DOI EuDML


[1] Barth, W.: Some properties of rank-2 vector bundles on ? n . Math. Ann.226, 125-150 (1977) · Zbl 0417.32013
[2] Barth, W.: Moduli of vector bundles on the projective plane. Inventiones math.42, 63-91 (1977) · Zbl 0386.14005
[3] Maruyama, M.: Stables vector bundles on an algebraic surface. Nagoya math. J.58, 25-68 (1975) · Zbl 0337.14026
[4] Maruyama, M.: Moduli of stables sheaves. II (preprint, p. 149) Kyoto University · Zbl 0395.14006
[5] Mumford, D.: Geometric invariant theory. Berlin, Heidelberg, New York: Springer 1965 · Zbl 0147.39304
[6] Mumford, D., Newstead, P.E.: Periods of a moduli space of bundles on curves. Amer. J. Math.90, 1200-1208 (1968) · Zbl 0174.52902
[7] Newstead, P.E.: A non-existence theorem for families of stables bundles. J. London Math. Soc.6, 259-266 (1973) · Zbl 0248.14007
[8] Newstead, P.E.: Topological properties of some spaces of stables bundles. Topology6, 241-262 (1967) · Zbl 0201.23401
[9] Serre, J.P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier6, 1-42 (1956)
[10] Schwarzenberger, R.L.E.: Vector bundles on the projective plane. Proc. London Math. Soc.11, 623-640 (1961) · Zbl 0212.26004
[11] Whithey, H.: Differentiables manifolds. Ann. of Math.37, 645-680 (1936) · Zbl 0015.32001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.