×

Double point resolutions of deformations of rational singularities. (English) Zbl 0405.14010


MSC:

14E15 Global theory and resolution of singularities (algebro-geometric aspects)
14D15 Formal methods and deformations in algebraic geometry
14B07 Deformations of singularities
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] M. Artin : Some numerical criteria for contractibility of curves on algebraic surfaces . Amer. J. Math. 84 (1962) 485-496. · Zbl 0105.14404
[2] D. Burns , M. Rapoport : On the Torelli problem for Kählerian K-3 surfaces . Ann. Sci. Ecole Norm. Sup. 8 (1975) 235-274. · Zbl 0324.14008
[3] A. Grothendieck : Local Cohomology . Lecture Notes in Math. no. 41, Springer-Verlag, 1967. · Zbl 0185.49202
[4] A. Grothendieck , J. Dieudonné : Éléments de Géometrie Algébrique II, III, III’, IV ; Publ. Math. IHES nos. 8, 11, 17, 28 (1961-1966). |
[5] R. Hartshorne : Residues and Duality : Lecture Notes in Math. no. 20, Springer-Verlag, 1966. · Zbl 0212.26101
[6] S. Kleiman : Relative duality for quasi-coherent sheaves (Preprint). · Zbl 0403.14003
[7] H. Laufer : On rational singularities . Amer. J. Math. 94 (1972) 597-608. · Zbl 0251.32002
[8] J. Lipman : Rational singularities . Publ. Math. IHES no. 36 (1969) 195-279. · Zbl 0181.48903
[9] J. Lipman : Desingularization of two-dimensional schemes . Annals of Math. 107 (1978) 151-207. · Zbl 0349.14004
[10] D.G. Northcott : An introduction to homological algebra , Cambridge University Press, London, 1960. · Zbl 0116.01401
[11] J. Wahl : Local cohomology groups for resolutions of singularities . Symposia in Pure Math. vol. 30 (1977) 91-94. · Zbl 0371.14004
[12] J. Wahl : Simultaneous resolution of rational singularities . Comp. Math. 38 (1979) 43-54. · Zbl 0412.14008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.