Vigue, Jean-Pierre Automorphismes analytiques des produits continus de domaines bornes. (French) Zbl 0405.32007 Ann. Sci. Éc. Norm. Supér. (4) 11, No. 2, 229-246 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 13 Documents MSC: 32K05 Banach analytic manifolds and spaces 32H99 Holomorphic mappings and correspondences 32M99 Complex spaces with a group of automorphisms 32A05 Power series, series of functions of several complex variables 58B12 Questions of holomorphy and infinite-dimensional manifolds PDF BibTeX XML Cite \textit{J.-P. Vigue}, Ann. Sci. Éc. Norm. Supér. (4) 11, No. 2, 229--246 (1978; Zbl 0405.32007) Full Text: DOI Numdam EuDML OpenURL References: [1] N. BOURBAKI , Topologie générale , Hermann, Paris. · Zbl 0337.54001 [2] E. CARTAN , Sur les domaines bornés homogènes de l’espace de n variables complexes (Abh. Math. Sem. Univ. Hamburg, vol. 11, 1936 , p. 116-162). Zbl 0011.12302 | JFM 61.0370.03 · Zbl 0011.12302 [3] H. CARTAN , Sur les transformations analytiques des domaines cerclés et semi-cerclés bornés (Math. Ann., vol. 106, 1932 , p. 540-573). Zbl 0004.22002 | JFM 58.0350.02 · Zbl 0004.22002 [4] H. CARTAN , Sur les fonctions de n variables complexes : les transformations du produit topologique de deux domaines bornés (Bull. Soc. math. Fr., vol. 64, 1936 , p. 37-48). Numdam | Zbl 0014.40804 | JFM 62.0399.02 · Zbl 0014.40804 [5] L. HARRIS and W. KAUP , Linear Algebraic Groups in Infinite Dimensions (à paraître dans l’Illinois J. Math.). Article | Zbl 0385.22011 · Zbl 0385.22011 [6] J.-P. VIGUÉ , Le groupe des automorphismes analytiques d’un domaine borné d’un espace de Banach complexe. Application aux domaines bornés symétriques (Ann. scient. Éc. Norm. Sup., 4e série, vol. 9, 1976 , p. 203-282). Numdam | MR 55 #3340 | Zbl 0333.32027 · Zbl 0333.32027 [7] J.-P. VIGUÉ , Les domaines bornés symétriques d’un espace de Banach complexe et les systèmes triples de Jordan (Math. Ann., vol. 229, 1977 , p. 223-231). MR 56 #5958 | Zbl 0344.32024 · Zbl 0344.32024 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.