×

Transversely homogeneous foliations. (English) Zbl 0405.57016


MSC:

57R30 Foliations in differential topology; geometric theory
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] [1] , The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc., (3), 25 (1972), 603-614. · Zbl 0259.20045
[2] [2] , Introduction to compact transformation groups, Academic Press, New York, 1972. · Zbl 0246.57017
[3] [3] , Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comm. Math. Helv., 32 (1958), 248-329. · Zbl 0085.17303
[4] [4] and , Foundations of differential geometry, vol. I, Interscience Tracts in Pure and Appl. Math., 15, Interscience, New York, 1963. · Zbl 0119.37502
[5] [5] , A global formulation of the Lie theory of transformation groups, Memoirs of the Amer. Math. Soc., 22 (1957). · Zbl 0178.26502
[6] [6] , Foliations with measure preserving holonomy, Ann. of Math., 102 (1975), 327-361. · Zbl 0314.57018
[7] [7] , Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (68), Springer-Verlag, Berlin, 1972. · Zbl 0254.22005
[8] [8] , Foliated manifolds with bundle-like metrics, Ann. of Math., (1), 69 (1959), 119-132. · Zbl 0122.16604
[9] [9] , A comprehensive introduction to differential geometry, vol. I, Publish or Perish, Boston, 1970. · Zbl 0202.52001
[10] [10] , Free subgroups in linear groups, J. of Alg., 20 (1972), 250-270. · Zbl 0236.20032
[11] [11] , Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. of Diff. Geom., 2 (1968), 421-446. · Zbl 0207.51803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.