Nearest neighbor birth and death processes on the real line. (English) Zbl 0405.60090


60K35 Interacting random processes; statistical mechanics type models; percolation theory
60K05 Renewal theory
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
Full Text: DOI


[1] Feller, W.,An Introduction to Probability Theory and Its Applications, Vol. II. John Wiley and Sons, New York, 1971. · Zbl 0219.60003
[2] Gray, L., Ph.D. thesis, Cornell University (1977).
[3] Holley, R. &Stroock, D., A martingale approach to infinite systems of interacting processes.Ann. Probability, 4 (1976), 195–228. · Zbl 0332.60072 · doi:10.1214/aop/1176996130
[4] Holley, R., Stroock, D. & Williams, D., Applications of dual processes to diffusion theory.Proceedings of A.M.S. Probability Symposium (1976), Urbana, pp. 23–36.
[5] Krylov, N. V., The selection of a Markov process from a Markov system of processes, and the construction of quasidiffusion processes.Math. USSR-Izv., 7 (1973), 691–709. · Zbl 0295.60057 · doi:10.1070/IM1973v007n03ABEH001971
[6] Lanford, O. E. III, The classical mechanics of one-dimensional systems of infinitely many particles II. Kinetic theory.Comm. Math. Phys., 11 (1969), 257–292. · Zbl 0175.21401 · doi:10.1007/BF01645848
[7] Ledrappier, F., Energy locale pour les systems continuous. To appear.
[8] Liggett, T. M., Existence theorems for infinite particle systems.Trans. Amer. Math. Soc., 165 (1972), 471–481. · Zbl 0239.60072 · doi:10.1090/S0002-9947-1972-0309218-7
[9] Parthasarathy, K. R.,Multipliers on locally compact groups. Springer Lecture Notes, Vol. 93 (1969). · Zbl 0188.20202
[10] Preston, C., Spatial birth-and-death processes. To appear in Proceedings of the Fortieth session of the I.S.I.
[11] Spitzer, F., Stochastic time evolution of one dimensional infinite particle systems.Bull. Amer. Math. Soc., 83 (1977), 880–890. · Zbl 0372.60149 · doi:10.1090/S0002-9904-1977-14322-X
[12] Stroock, D., Diffusion processes associated with Levy generators.Z. Wahrscheinlichkeitstheorie Verw. Geb., 32 (1975), 209–244. · Zbl 0292.60122 · doi:10.1007/BF00532614
[13] Stroock, D. &Varadhan, S. R. S., Diffusion processes with continuous coefficients, I.Comm. Pure Appl. Math., 22 (1969), 345–400. · Zbl 0167.43903 · doi:10.1002/cpa.3160220304
[14] –, Diffusion processes with boundary conditions.Comm. Pure Appl. Math., 24 (1971), 147–225. · Zbl 0227.76131 · doi:10.1002/cpa.3160240206
[15] Stroock, D. &Varadhan, S. R. S.,Diffusion Theory. Springer Verlag, Heidelberg, 1977.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.