×

zbMATH — the first resource for mathematics

Semidiscrete and single step fully discrete approximations for second order hyperbolic equations. (English) Zbl 0405.65057

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35L15 Initial value problems for second-order hyperbolic equations
35L20 Initial-boundary value problems for second-order hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] 1 I BABUSKA, Survey Lectures on the Mathematical Foundations of the finite element method, in < The Mathematical Foundations of the finite element method wit applications to partial differential equations > , A K Aziz, e d , Academic Press, New York, 1972 Zbl0268.65052 MR421106 · Zbl 0268.65052
[2] 2 I BABUSKA, The finite element method with Lagrangian multipliers, Numer Math , 20, 1973, p 179-192 Zbl0258.65108 MR359352 · Zbl 0258.65108 · doi:10.1007/BF01436561 · eudml:132183
[3] 3 G A BAKER, Error estimates for finite element methods for second order hyperbolic equations, S I A M , J Numer Anal, 13, n^\circ 4, 1976, p 564-576 Zbl0345.65059 MR423836 · Zbl 0345.65059 · doi:10.1137/0713048
[4] 4 G A BAKER, Finite element-Galerkin approximations for hyperbolic equations with discontinuons coefficients, Tech Rep Math , École Polytechnique de Lausanne, 1973
[5] 5 G A BAKER, J H BRAMBLE, V THOMEE, Single step Galerkin approximations for parabolic equations Math Cornp 31, n^\circ 140 1977 p 818-847 Zbl0378.65061 MR448947 · Zbl 0378.65061 · doi:10.2307/2006116
[6] 6 J H BRAMBLE, J OSBORN, Rate of convergence estimates for nonself-adjoint eigen-value approximations, Math Comp, 27, n^\circ 123, 1973, p 525-549 Zbl0305.65064 MR366029 · Zbl 0305.65064 · doi:10.2307/2005658
[7] 7 J H BRAMBLE, V THOMEE, Discrete time Galerkin methods for a par abolie boundary value problem, Ann Mat Pura Appl, Serie IV, 101, 1974, p 115-152 Zbl0306.65073 MR388805 · Zbl 0306.65073 · doi:10.1007/BF02417101
[8] 8 M CROUZEIX, Sur l’approximation des equations differentielles operationnelles lineaires par des methodes de Runge-Kutta, These, Univ de Pans VI, 1975
[9] 9 T DUPONT, L 2 estimates for Galerkin methods for second order hyperbolic equations, S I A M , J Numer Anal, 10, n^\circ 5, 1973, p 880-889 Zbl0239.65087 MR349045 · Zbl 0239.65087 · doi:10.1137/0710073
[10] 10 J NITSCHE, Uber ein Vartationspnnzip zur Losung von Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unterworfen sind, A B H Math Sem, Univ Hamburg, 36, 1971, p 9-15 Zbl0229.65079 MR341903 · Zbl 0229.65079 · doi:10.1007/BF02995904
[11] 11 J NÏTSCHE, On Dinchlet problems using subspaces with nearly zero boundary conditions, in < The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations > , A K Aziz, ed , Academic Press, New York, 1972, p 603-627 Zbl0271.65059 MR426456 · Zbl 0271.65059
[12] 12 S P NØRSETT, One step methods of Hermite type for numencal integration of stiff systems, B I T 14, 1974, p 63-77 Zbl0278.65078 MR337014 · Zbl 0278.65078 · doi:10.1007/BF01933119
[13] 13 R S VARGA, Matrix iterative analysis, Prentice Hall, Englewood Cliffs, N J , 1962 Zbl0133.08602 MR158502 · Zbl 0133.08602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.