×

A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows. (English) Zbl 0405.76017


MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Kawaguti, M., J. phys. soc. Japan, 16, 2307, (1961)
[2] Mills, R.D., J. phys. aeron. soc., 69, 714, (1965)
[3] Burggraf, O.R., J. fluid mech., 24, 133, (1966)
[4] Simuni, L.M., Inzlenernii zh., 4, 446, (1964)
[5] Greenspan, D., Comput. J., 12, 89, (1969)
[6] Runchal, A.K.; Spalding, D.B.; Wolfshtein, M., Phys. fluids suppl. II, 12, II-21, (1969)
[7] Bozeman, J.D.; Dalton, C., J. computational phys., 12, 348, (1973)
[8] Ozawa, S., J. phys. soc. Japan, 38, 889, (1975)
[9] Chorin, A.J., Math. comp., 22, 745, (1968)
[10] Hirt, C.W.; Cook, J.L., J. computational phys., 10, 324, (1972)
[11] Harlow, F.H.; Welch, J.E., Phys. fluids, 8, 2182, (1965)
[12] Nichols, B.D.; Hirt, C.W., J. computational phys., 12, 234, (1973)
[13] Patanka, S.V.; Spalding, D.V., Internat. J. heat mass transfer, 15, 1787, (1972) · Zbl 0246.76080
[14] Bailey, W.R., J. computational phys., 14, 8, (1974)
[15] Takami, H.; Kuwahara, K., J. phys. soc. Japan, 37, 1695, (1974)
[16] Samarskii, A.A.; Samarskii, A.A., Z. vyčisl. mat. i mat. fiz., USSR comput. math. and math. phys., 1963, 894, (1964)
[17] Richtmyer, R.D.; Morton, K.W., Difference methods for initial-value problems, (), 212 · Zbl 0155.47502
[18] Pan, F.; Acrivos, A., J. fluid mech., 28, 643, (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.