×

A theory of generally invariant Lagrangians for the metric fields. I. (English) Zbl 0407.58003


MSC:

58A20 Jets in global analysis
53C80 Applications of global differential geometry to the sciences
70G99 General models, approaches, and methods in mechanics of particles and systems
Full Text: DOI

References:

[1] Dieudonn?, J. (1969).Treatise on Analysis, Vol. I. Academic, New York. · Zbl 0176.00502
[2] Dieudonn?, J. (1972).Treatise on Analysis, Vol. III. Academic, New York. · Zbl 0268.58001
[3] Ehresmann, C. (1953).Colloque de G?om?trie Diff?rentielle de Strasbourg, p. 97. Centre National de la Recherche Scientifique, Paris.
[4] Eisenhart, L. P. (1964).Riemannian Geometry, Princeton University Press, Princeton, N.J. · Zbl 0174.53303
[5] Hermann, R. (1968).Differential Geometry and the Calculus of Variations. Academic, New York. · Zbl 0219.49023
[6] Kol??, I. (1971a).Revue Roumaine de Math?matiques Pures et Appliqu?es,XX, 1091; (1971b).Analele Stiintifice ale Universitatii ?Al. I. Cuza?, Matematica,XVII, 437.
[7] Krupka, D. (1974).Bulletin de l’Academie Polonaise des Sciences, Serie des Sciences, Mathematiques, Astronomiques et Physiques,XXII, 967.
[8] Krupka, D. (1976).International journal of Theoretical Physics,15, 949. · Zbl 0382.49036 · doi:10.1007/BF01807715
[9] Krupka, D., and Trautman, A. (1974).Bulletin de l’Academie Polonaise des Sciences, Serie des Sciences, Mathematiques, Astronomiques et Physiques,XXII, 207.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.