×

zbMATH — the first resource for mathematics

Structure of sequential tests minimizing an expected sample size. (English) Zbl 0407.62055

MSC:
62L10 Sequential statistical analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, T.W.: A modification of the sequential probability ratio test to reduce the sample size. Ann. Math. Statist.31, 165-197 (1960) · Zbl 0089.35501 · doi:10.1214/aoms/1177705996
[2] Burkholder, D.L., Wijsman, R.A.: Optimum properties and admissibility of sequential tests. Ann. Math. Statist.34, 1-17 (1963) · Zbl 0113.13005 · doi:10.1214/aoms/1177704238
[3] Chow, Y.S., Robbins, H., Siegmund, D.: Great Expectations: The Theory of Optimal Stopping. Boston: Houghton-Mifflin 1971 · Zbl 0233.60044
[4] Ferguson, T.S.: Mathematical Statistics, a Decision Theoretic Approach. New York: Academic Press 1967 · Zbl 0153.47602
[5] Kiefer, J., Weiss, L.: Some properties of generalized sequential probability ratio tests. Ann. Math. Statist.28, 57-75 (1957) · Zbl 0079.35406 · doi:10.1214/aoms/1177707037
[6] Lai, T.L.: Optimal stopping and sequential tests which minimize the maximum expected sample size. Ann. Statist.1, 659-673 (1973) · Zbl 0261.62062 · doi:10.1214/aos/1176342461
[7] Lehmann, E.L.: Testing Statistical Hypotheses. New York: Wiley 1959 · Zbl 0089.14102
[8] Lorden, G.: 2-SPRT’s and the modified Kiefer-Weiss problem of minimizing an expected sample size. Ann. Statist.4, 281-291 (1976) · Zbl 0367.62099 · doi:10.1214/aos/1176343407
[9] Lorden, G.: Nearly-optimal sequential tests for finitely many parameter values. Ann. Statist.5, 1-21 (1977) · Zbl 0386.62070 · doi:10.1214/aos/1176343737
[10] Matthes, T.K.: On the optimality of sequential probability ratio tests. Ann. Math. Statist.34, 18-21 (1963) · Zbl 0113.13102 · doi:10.1214/aoms/1177704239
[11] Simons, G.: An improved statement of optimality for sequential probability ratio tests. Ann. Statist.4, 1240-1243 (1976) · Zbl 0346.62059 · doi:10.1214/aos/1176343655
[12] Spitzer, F.: A combinatorial lemma and its application to probability theory. Trans. Amer. Math. Soc.82, 332-339 (1956) · Zbl 0071.13003 · doi:10.1090/S0002-9947-1956-0079851-X
[13] Wald, A., Wolfowitz, J.: Optimum character of the sequential probability ratio test. Ann. Math. Statist.19, 326-339 (1948) · Zbl 0032.17302 · doi:10.1214/aoms/1177730197
[14] Weiss, L.: On sequential tests which minimize the maximum expected sample size. J. Amer. Statist. Assoc.57, 551-566 (1962) · Zbl 0114.10304 · doi:10.2307/2282392
[15] Wijsman, R.A.: Existence, uniqueness, and monotonicity of sequential probability ratio tests. Ann. Math. Statist.34, 1541-1548 (1963) · Zbl 0212.21101 · doi:10.1214/aoms/1177703886
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.